Guía docente de Arquitecturas de Altas Prestaciones para Visión (M51/56/3/14)

Curso 2022/2023
Fecha de aprobación por la Comisión Académica 05/07/2022

Máster

Máster Universitario en Ciencia de Datos e Ingeniería de Computadores

Módulo

Módulo de Sistemas de Aplicación Específica

Rama

Ingeniería y Arquitectura

Centro Responsable del título

Escuela Internacional de Posgrado

Semestre

Segundo

Créditos

4

Tipo

Optativa

Tipo de enseñanza

Presencial

Profesorado

  • Francisco Barranco Expósito

Horario de Tutorías

Francisco Barranco Expósito

Email
  • Tutorías 1º semestre
    • Miércoles 10:30 a 13:30 (Etsiit)
    • Jueves 15:30 a 18:30 (Etsiit)
  • Tutorías 2º semestre
    • Miércoles 10:30 a 13:30 (Etsiit)
    • Jueves 15:30 a 18:30 (Etsiit)

Breve descripción de contenidos (Según memoria de verificación del Máster)

Esta materia se enmarca en una ingeniería, con una importante faceta experimental con interés en estudios multidisciplinares. Por ello incluye distintos componentes: formación teórica sobre materia de base, diseño y experimentación, incluyendo además un elevado número de aplicaciones y casos de estudio. La materia se estructura en cuatro bloques fundamentales:

  • Bloque I: Requisitos computacionales de la visión por computador. En este capítulo se analizan las características computacionales de los algoritmos de visión por computador.
  • Bloque II: Visión por computador con coprocesadores y sistemas de visión empotrados. Este bloque presenta las principales plataformas de cómputo para visión por computador, identificando aspectos de las mismas como son sus prestaciones, consumo de energía, portabilidad, coste, etc. Se realizarán prácticas usando microprocesadores, GPUs y FPGAs en sistemas empotrados.
  • Bloque III: Sistemas de procesamiento para visión temprana. Ejemplos para algoritmos de visión de cómputo intensivo, ejemplos de procesamiento como los detectores de bordes, esquinas, flujo óptico, estéreo, etc. Se emplearán sensores de visión inspirados en la biología.
  • Bloque IV: Ejemplos y aplicaciones. Casos de estudio de sistemas de visión por computador, tanto comerciales como de investigación y sus plataformas de procesamiento.

Prerrequisitos y/o Recomendaciones

Es recomendable (no obligatorio) que el estudiante posea algunos conocimentos generales de procesamiento de imagen, programación y plataformas de cómputo.

Competencias

Competencias Básicas

  • CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
  • CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Generales

  • CG01. Capacidad de acceso y gestión de la información 
  • CG02. Capacidad de análisis y síntesis 
  • CG03. Capacidad de organización y planificación 
  • CG04. Capacidad emprendedora 
  • CG05. Capacidad para tomar decisiones de forma autónoma 
  • CG06. Capacidad de uso de una lengua extranjera 
  • CG07. Motivación por la calidad 
  • CG08. Capacidad para trabajar en equipo 

Competencias Específicas

  • CE01. Capacidad para el diseño, configuración, implementación y evaluación de plataformas de cómputo y redes para que proporcionen los niveles de prestaciones y satisfagan los requisitos establecidos por las aplicaciones en cuanto a coste, velocidad, fiabilidad, disponibilidad y seguridad. 
  • CE04. Capacidad de análisis de aplicaciones en ámbitos de biomedicina y bioinformática, optimización y predicción, control avanzado, y robótica bioinspirada, tanto desde el punto de vista de los requisitos para una implementación eficaz de los algoritmos y las técnicas de computación que se usan para abordarlas, como de las características deseables en las arquitecturas donde se ejecutan 

Competencias Transversales

  • CT01. Ser consciente de la importancia del desarrollo sostenible y demostrar sensibilidad medioambiental. 
  • CT02. Ser consciente del derecho a la no discriminación y al acceso universal al conocimiento de las personas con discapacidad. 

Resultados de aprendizaje (Objetivos)

  • Los estudiantes serán capaces de analizar un algoritmo de visión por computador y determinar los requisitos computacionales asociados.
  • Los estudiantes serán capaces de escoger una plataforma de cómputo para aplicaciones de visión atendiendo a criterios de minimización de coste, tiempo de diseño, mejora de la fiabilidad o aumento de las prestaciones.
  • Los estudiantes serán capaces de analizar y proponer plataformas para el procesamiento para algoritmos de visión temprana (entre otros sensores, usando retinas artificiales).
  • Los estudiantes conocerán ejemplos prácticos de soluciones de sistemas de visión por computador.

Programa de contenidos Teóricos y Prácticos

Teórico

  • Tema 1: Requisitos computacionales de la visión por computador. Características de los algoritmos. Niveles de abstracción. Estructuras de datos.
  • Tema 2: Plataformas para procesamiento de imágenes. Coprocesadores y sistemas de visión empotrados. Compromisos de diseño: coste, prestaciones, consumo de potencia, etc. Uso de aceleradores como GPUs y FPGAs.
  • Tema 3: Sistemas de procesamiento para visión temprana. Implementación de operaciones sencillas como filtrado de imagen, extracción de características, reconocimiento de patrones, etc.
  • Tema 4: Ejemplos y aplicaciones. Sistemas de ayuda a la conducción, robótica, automatización industrial, etc. 

Práctico

  • Seminario 1: Introducción a los sistemas de procesamiento de visión bioinspirada.
  • Seminario 2: Aplicaciones de sistemas empotrados para procesamiento de visión: robótica, videovigilancia, salud, etc.
  • Práctica 1: Diseño de sistemas empotrados para visión por computador usando FPGAs
  • Práctica 2: Diseño de sistemas empotrados para visión por computador usando GPUs

Metodología docente

  • MD01 Lección magistral/expositiva 
  • MD02 Resolución de problemas y estudio de casos prácticos 
  • MD03 Prácticas de laboratorio 
  • MD04 Seminarios 
  • MD05 Análisis de fuentes y documentos 
  • MD06 Realización de trabajos en grupo 
  • MD07 Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)

Evaluación Ordinaria

Todo lo relativo a la evaluación se regirá por la normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada. El sistema de calificaciones se expresará mediante calificación numérica de acuerdo con lo establecido en el art. 5 del R. D 1125/2003, de 5 de septiembre, por el que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y validez en el territorio nacional.

La metodología de evaluación por defecto según la normativa de la Universidad de Granada es la evaluación continua, que en el caso de esta asignatura se compone de los siguientes elementos:

  • Evaluación de la Parte Teórica: exámenes finales o parciales, sesiones de evaluación y defensa de trabajos sobre el desarrollo y los resultados de las actividades propuestas.
  • Evaluación de la Parte Práctica: se realizarán prácticas de laboratorio, resolución de problemas y desarrollo de proyectos (individuales o en grupo), y se valorarán las entregas de los informes o memorias realizados por los alumnos, o en su caso las entrevistas personales con los alumnos y las sesiones de evaluación.
  • Evaluación de los Seminarios y otras actividades: se tendrá en cuenta la asistencia, los problemas propuestos que hayan sido resueltos y entregados por los alumnos, en su caso, las entrevistas efectuadas durante el curso y la presentación oral de los trabajos desarrollados.

 En la siguiente tabla se detallan los porcentajes sobre la calificación final de cada parte:

Descripción del sistema de evaluación Ponderación
Evaluación de la parte teórica 40%
Evaluación de la parte práctica 40%
Evaluación de los seminarios y otras actividades 20%

La asistencia a las clases presenciales no será obligatoria, aunque la participación en las actividades planteadas será tenida en cuenta en el sistema de evaluación continua.

Evaluación Extraordinaria

El artículo 19 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidadde Granada establece que los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de evaluación continua. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de obtener el 100% de la calificación mediante la realización de una prueba y/o entrega y defensa de un trabajo.

En las convocatorias extraordinarias se utilizará la evaluación única final, tal y como se describe más abajo.

Evaluación única final

El artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que podrán acogerse a la evaluación única final, el estudiante que no pueda cumplir con el método de evaluación continua por causas justificadas.

Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura o en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de las clases, lo solicitará, a través del procedimiento electrónico, a la Coordinación del Máster, quien dará traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua.

La evaluación en tal caso consistirá en: la evaluación única final se realizará en un solo acto académico. Dicha prueba (evaluada de 0 a 10) incluirá pruebas tanto de tipo teórico como práctico que garanticen que el alumno ha adquirido la totalidad de las competencias descritas en esta guía docente.

Información adicional