Guía docente de Aspectos Computacionales en la Estimación de Errores en Encuestas por Muestreo (SG1/56/1/315)
Máster
Módulo
Rama
Centro en el que se imparte la docencia
Centro Responsable del título
Semestre
Créditos
Tipo
Tipo de enseñanza
Profesorado
- Ramón Ferri García
- Pablo Morales Álvarez
- María Del Mar Rueda García
Breve descripción de contenidos (Según memoria de verificación del Máster)
1. Estimación aproximada de la varianza. Justificación, definiciones básicas y clasificación de métodos.
2. Técnica de linealización.
3. Técnica de grupos aleatorios.
4. Método Jackknife.
5. Método Bootstrap.
6. Software para estimación de errores muestrales
7. El entorno R para la estimación de la varianza.
Prerrequisitos y/o Recomendaciones
Es recomendable que el alumno haya cursado alguna asignatura de muestreo en poblaciones finitas.
Competencias
Competencias Básicas
- CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
Competencias Generales
- CG01. Los titulados han de saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CG02. Los titulados han de ser capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CG03. Los titulados han de saber comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CG04. Los titulados deben poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CG05. Los titulados han de demostrar una comprensión sistemática del campo de estudio y el dominio de las habilidades y métodos de investigación relacionados con dicho campo.
- CG06. Los titulados deben demostrar la capacidad de concebir, diseñar, poner en práctica y adoptar un proceso sustancial de investigación con seriedad académica.
- CG07. Los titulados han de realizar una contribución a través de una investigación original que amplíe las fronteras del conocimiento desarrollando un corpus sustancial, del que parte merezca la publicación referenciada a nivel nacional o internacional.
- CG08. Los titulados deben ser críticos en el análisis, evaluación y síntesis de ideas nuevas y complejas.
- CG09. Los titulados deben saber comunicarse con sus colegas, con la comunidad académica en su conjunto y con la sociedad en general acerca de sus áreas de conocimiento.
- CG10. Los titulados han de ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento.
Competencias Específicas
- CE01. Conocer métodos para el Análisis de Datos
- CE02. Conocer diferentes técnicas de Muestreo
- CE03. Adquirir conocimientos avanzados en Probabilidad y Procesos Estocásticos
- CE04. Profundizar en las técnicas de Modelización Estocástica
- CE05. Adquirir conocimientos avanzados en Inferencia Estadística
- CE07. Saber identificar y aplicar diferentes Modelos Econométricos
- CE08. Conocer técnicas de teoría de Fiabilidad
- CE10. Dominar el uso de diferentes entornos de Computación Estadística
- CE12. Ser capaz de resolver problemas a través de técnicas de Simulación Estocástica
- CE13. Saber llevar a cabo el diseño, programación e implantación programas de computación estadística
- CE15. Ser capaza de identificar la información relevante para resolver un problema
- CE16. Utilizar correcta y racionalmente programas de ordenador de tipo estadístico
- CE17. Adquirir capacidades de elaboración y construcción de modelos y su validación
- CE18. Ser capaz de realizar un análisis de datos
- CE19. Saber gestionar bases de datos
- CE20. Ser capaz de realizar una correcta representación gráfica de datos
- CE21. Conocer, identificar y seleccionar fuentes estadísticas
- CE22. Ser capaz de interpretar resultados a partir de modelos estadísticos
- CE23. Adquirir capacidad para elaborar previsiones y escenarios
- CE24. Ser capaz de extraer conclusiones y redactar informes
Competencias Transversales
- CT01. Mostrar interés por la calidad y la excelencia en la realización de diferentes tareas
- CT02. Comprender y defender la importancia que la diversidad de culturas y costumbres tienen en la investigación o práctica profesional
- CT03. Tener un compromiso ético y social en la aplicación de los conocimientos adquiridos
- CT04. Ser capaz de trabajar en equipos interdisciplinarios para alcanzar objetivos comunes desde campos expertos diferenciados.
- CT05. Incorporar los principios del Diseño Universal en el desempeño de su profesión
Resultados de aprendizaje (Objetivos)
El alumno sabrá/comprenderá:
- La problemática de la estimación de errores de muestreo en encuestas con muestras complejas y con parámetros no lineales.
- Las técnicas aproximadas de estimación de varianzas.
El alumno será capaz:
- Elaborar programas para la estimación de varianzas en situaciones complejas concretas que se le planteen.
Programa de contenidos Teóricos y Prácticos
Teórico
- Tema 1. Estimación aproximada de la varianza. Justificación, definiciones básicas y clasificación de métodos.
- Tema 2. Técnica de linealización. Definición, aplicación a las estimación de un cociente.
- Tema 3. Técnica de grupos aleatorios. Grupos aleatorios dependientes, grupos aleatorios independientes.
- Tema 4. Método Jackknife Definición para m.a.s. Definición para otros diseños muestrales.
- Tema 5. Método Bootstrap.
- Tema 6. Software para estimación de errores muestrales. Librerías de R para la estimación de la varianza.
Práctico
Software para la estimación de errores. El entorno de programación R. Librerías para técnicas de remuestreo.
Bibliografía
Bibliografía fundamental
- Wolter, K.M. (1985), Introduction to variance estimation, Springer-Verlag, New York
- Särndall, C.E., Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. New York: Springer-Verlag.
Bibliografía complementaria
- Antal E, Tillé Y (2011) A direct bootstrap method for complex sampling designs from a finite population. J Am Stat Assoc 106:534–543
- Chambers, R.L., Skinner, C.J. (2004) Analysis of Survey Data. John Wiley and Sons,
- Tillé, Y and Matei, A, The R sampling package, CRAN, Software manual, 2006
- Rao, J.N.K., Wu, C.F.J., and Yue, K. (1992). Some Recent Work on Resampling Methods for
Complex Surveys. Survey Methodology, 18, 209-217.
Enlaces recomendados
Metodología docente
- MD01 Lección magistral/expositiva
- MD02 Sesiones de discusión y debate
- MD03 Resolución de problemas y estudio de casos prácticos
- MD04 Prácticas de laboratorio o clínicas
- MD05 Seminarios
- MD06 Ejercicios de simulación
- MD07 Análisis de fuentes y documentos
- MD08 Realización de trabajos en grupo
- MD09 Realización de trabajos individuales
Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)
Evaluación Ordinaria
- El alumno demostrará si ha asimilado los conceptos expuestos en los resúmenes mediante la resolución de las actividades propuestas. Al terminar cada tema se le propondrá una o más actividades asíncronas relacionadas con la técnica concreta estudiada. Todas las actividades de cada tema tendrán el mismo porcentaje en la nota. El porcentaje de estas actividades en la nota final será del 80%.
- Se tendrá en cuenta también la actitud del alumno ante la materia, su dedicación continuada, su asimilación de conceptos y su capacidad para resolver los problemas planteados en las fechas fijadas. Esto supondrá el 20% de la nota final.
Evaluación Extraordinaria
Se realizará una prueba final única en la que se evaluarán todos los temas
Evaluación única final
Se realizará una prueba final única en la que se evaluarán todos los temas
Información adicional
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).
Software Libre
R https://cran.r-project.org/