Guía docente de International Cyberintelligence (MQ2/56/1/12)
Máster
Módulo
Rama
Centro Responsable del título
Semestre
Créditos
Tipo
Tipo de enseñanza
Profesorado
- José Manuel Benítez Sánchez
- Pablo García Sánchez
- Alberto Guillén Perales
- Alberto Casares Andrés
Breve descripción de contenidos (Según memoria de verificación del Máster)
Cyberintelligence. Applied Data Science. Machine Learning. Anomaly Detection. Adversarial Machine Learning.
Prerrequisitos y/o Recomendaciones
A good knowledge of fundamentals of cybersecurity is, of course, necessary.
In addition, it is highly convenient to have a thorough background on the security aspects of the essential components of computing: operating systems, applications, networking, hardware platforms (servers, desktop computers, laptops, mobile computing, IoT devices).
Finally, a solid knowledge on the foundations of Data Science and Machine Learning as well as practical skills in their application.
If AI tools are used to develop the tasks included in this course, students must adopt an ethical and responsible approach to their use. The recommendations contained in the document "Recommendations for the Use of Artificial Intelligence in the UGR" should be followed.
Competencias
Competencias Básicas
- CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
Resultados de aprendizaje (Objetivos)
- Students will know and understand the fundamentals of international cyberintelligence.
- Students will be able to use and apply common cyberintellligence data extraction tools.
- Students will be able to use and apply common machine learning techniques.
- Students will be able to design and deploy a pipeline for the analysis of cyberintelligence data.
- Students will be able to evaluate existing machine learning tools and techniques.
Programa de contenidos Teóricos y Prácticos
Teórico
- The cyberintelligence lifecyle
- Basis concepts of cyberintelligence
- Roles in cyberintelligence
- Lifecycle
- Sources of Intelligence:
- Human Intelligence (HUMINT)
- Open-source intelligence (SOCINT)
- Signal intelligence (SIGINT)
- Technical intelligence (TECHINT)
- Social media intelligence (SOCMINT)
- Data Science for cyberIntelligence
- Data integration
- Data extraction
- Data cleaning and preprocessing
- Predictive modelling and pattern recognition
- Supervised machine learning methods
- Unsupervised machine learning methods
- Anomaly detection methods
- Adversarial machine learning
- Applications in cyberintelligence
- Social network analysis
- Community detection methods
Práctico
- Data Science for Cyberintelligence
- Data location and extraction
- Data preprocessing and exploratory analysis
- Predictive modeling
- Anomaly detection
- Solving real problems in cyberintelligence
Bibliografía
Bibliografía fundamental
- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne & Vipin Kumar, 2019, "Introduction to Data Mining", ISBN 0273769227
- Mark E.J. Newman, 2018, "Networks: An Introduction", ISBN 0198805098
- Ian Goodfellow, Yoshua Bengio & Aaron Courville, 2016, "Deep Learning", ISBN 0262035618
- AnHai Doan, Alon Halevy & Zachary Ives, 2012, "Principles of Data Integration", ISBN 0124160441
- ChengXiang Zhai & Sean Massung, 2016, "Text Data Management and Analysis", ISBN 1970001194
Bibliografía complementaria
- N. Heard, N. Adams, P. Rubin-Delanchy, M. Turcotte (eds), 2018, "Data Science for Cyber-Security", World Scientific
- I.H. Sarker, A.S.M. Kayes, S. Badsha, H. Alqahtani, P. Watters, A. Ng, "Cybersecurity data science: an overview from machine learning perspective", J. Big Data, 7, 41(2020), https://doi.org/10.1186/s40537-020-00318-5
- G. Dimitrov, "A Brief History of Cyber Intelligence", American Intelligence Journal, 37, 1 (2020) pp. 107-114. https://www.jstor.org/stable/27087688
Enlaces recomendados
Metodología docente
Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)
Evaluación Ordinaria
For the regular exam, students must complete assignments given in class, give presentations and solve practical problems. This part accounts for 50% of the grade.
In addition, students must pass written exams, that account for 40%. A minimum of 15% (out the 40%) is necessary in this part for the student to be eligible to pass all the course.
Finally, attendance is valued up to a 10% fo the grade.
Evaluación Extraordinaria
The student will have to pass a written exam on the theoretical and practical content of the course, which will take place in a single academic act.
Evaluación única final
The student will have to pass a written exam on the theoretical and practical content of the course, which will take place in a single academic act.
Información adicional
The contents of the course will be managed in the Arqus Virtual Campus (https://virtualcampus.arqus-alliance.eu)
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).
Software Libre
- Python
- Python Packages: PyPI
- Linux
- Orange Data Mining
- SnapperML