Guía docente de la asignatura

Fecha de aprobación por la Comisión Académica: 18/07/2023

Historia de la Ingeniería y Gestión del Patrimonio de la Obra Pública (MA9/56/1/42)

Máster	Máster Universitario en Ingeniería de Caminos, Canales y Puertos
MÓDULO	Optatividad
RAMA	Ingeniería y Arquitectura
CENTRO RESPONSABLE DEL TÍTULO	Escuela Internacional de Posgrado
Semestre Primero	Créditos3TipoOptativaTipo de enseñanzaPresencial

PRERREQUISITOS Y/O RECOMENDACIONES

No se precisan

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Máster)

Etapas de la historia de la Ingeniería Civil.

Teorías y metodologías sobre definición, identificación y valoración del patrimonio de las obras públicas.

Enfoques de conservación, restauración, rehabilitación y reutilización de obras públicas con interés cultural.

COMPETENCIAS

COMPETENCIAS BÁSICAS

• CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser

- originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

RESULTADOS DE APRENDIZAJE (Objetivos)

- Un profundo conocimiento y comprensión de las disciplinas de la ingeniería propias de su especialidad, en el nivel necesario para adquirir el resto de competencias del título.
- Posesión, con sentido crítico, de los conocimientos de vanguardia de su especialidad.
- Conocimiento con sentido crítico del amplio contexto multidisciplinar de la ingeniería y de la interrelación que existe entre los conocimientos de los distintos campos.
- Capacidad para identificar, formular y resolver problemas de ingeniería en áreas emergentes de su especialidad.
- Capacidad para identificar, formular y resolver problemas de ingeniería definidos de forma incompleta, y/i en conflicto, que admitan diferentes soluciones válidas, que requiera considerar conocimientos más allá de los propios de su disciplina y tener en cuenta las implicaciones sociales, de salud y seguridad, ambientales, económicas e industriales; seleccionar y aplicar los métodos más adecuados de análisis, de cálculo y experimentales, así como los más innovadores para la resolución de problemas.
- Capacidad para proyectar, desarrollar y diseñar nuevos productos complejos (piezas, componentes, productos acabados, etc.), procesos y sistemas con especificaciones definidas de forma incompleta, y/o conflicto, que requieren la integración de conocimiento de diferentes disciplinas y considerar los aspectos sociales, de salud y seguridad, ambientales, económicos e industriales; seleccionar y aplicar las metodologías apropiadas o utilizar la creatividad para desarrollar nuevas metodologías de provecto.
- Capacidad para acometer la formación continua propia de forma independiente.
- Capacidad y destreza de alto nivel para proyectar y llevar a cabo investigaciones experimentales, interpretar datos con criterio y extraer conclusiones.
- Capacidad para investigar sobre la aplicación de las tecnologías más avanzadas en su especialidad.
- Completo conocimiento de las técnicas aplicables y métodos de análisis, proyecto e investigación y de sus limitaciones.
- Completo conocimiento de aplicación de materiales, equipos y herramientas, tecnología y procesos de ingeniería y sus limitaciones.
- Conocimiento y comprensión crítica sobre temas económicos, de organización y gestión (como gestión de proyectos, gestión del riesgo y del cambio).
- Capacidad para integrar conocimientos y manejar conceptos complejos, para formular juicios con información limitada o incompleta, que incluya reflexión sobre responsabilidad ética y social relacionada con la aplicación de su conocimiento y opinión.

- Capacidad para gestionar complejas actividades técnicas o profesionales o proyectos que requieren nuevos enfoques de aproximación, asumiendo la responsabilidad de las decisiones adoptadas.
- Capacidad para adquirir conocimientos ulteriores de forma autónoma.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

UNIDAD TEMÁTICA 1. HISTORIA DE LA INGENIERÍA CIVIL

Lección 1: HISTORIA DE LA INGENIERÍA CIVIL ¿PARA QUÉ?

- Las Obras Públicas históricas: Memoria y sentido de las construcciones históricas;
- El arte, la técnica y los materiales en las Obras Públicas históricas

Lección 2: ANÁLISIS HISTÓRICO EN LA APLICACIÓN DEL ESTUDIO DE LAS OBRAS PÚBLICAS

- Fuentes de información para el estudio de la Historia de la Ingeniería Civil
- ¿Cómo identificar una obra de Ingeniería Histórica? Metodología y aplicación
- El análisis de las obras de Ingeniería de la Antigüedad. Griegos y romanos ante los caminos, los puertos y las obras hidráulicas

Lección 3. DEL INGENIO A LA INGENIERÍA

- Los ingenios en la Edad Medieval. Las artes mecánicas y el agua.
- De la teoría a la práctica. Los manuscritos y la tecnología renacentista
- Ingenieros, constructores y artistas. La Ingeniería del Renacimiento
- La Ingeniería Ilustrada de los siglos XVII y XVIII. Los ingenieros militares

Lección 4. EL PENSAMIENTO CIENTÍFICO EN LA INGENIERÍA

- La Ingeniería del siglo XIX. Nuevos materiales, Nuevos tipos y formas
- Los ingenieros de la Industrialización. La simbología del hierro
- El ferrocarril, los nuevos puertos, los canales

Lección 5. ¿ESTO TAMBIÉN ES PATRIMONIO?

- La Ingeniería del siglo XX
- La consolidación del Hormigón Armado
- Redes viarias, grandes presas, el ferrocarril, los puertos

UNIDAD TEMÁTICA 2. GESTIÓN DEL PATRIMONIO DE LA OBRA PÚBLICA

Lección 6. El Patrimonio de la Obra Pública ¿Existe? ¿Es necesario conservarlo?

- La Dimensión cultural y social del Patrimonio de la Obra Pública
- El Patrimonio de la Obra Pública como Huellas del pasado vivo
- La capacidad dinamizadora del Patrimonio de la Obra Pública en el territorio

Lección 7. Las cuestiones específicas del Patrimonio de la Obra Pública

CIF: Q1818002F

3/7

- Los valores patrimoniales específicos de la Obra Pública
- El territorio y el paisaje a través del Patrimonio de la Obra Pública
- La técnica, la estética y el uso de la Obra Pública patrimonial

Lección 8. ¿Cómo afrontar la intervención sobre el Patrimonio de la Obra Pública?

- ¿Conservación o restauración? Las teorías de la intervención en el Patrimonio
- Los criterios de actuación como método de intervención en el Patrimonio
- Compatibilidad de usos. Cómo reutilizar una Obra Pública patrimonial

Lección 9. Experiencias de restauración de la Obra Pública

- Restauración de puentes de fábrica, hierro y hormigón
- Ensanches en puentes históricos
- Actuaciones en puertos históricos

Lección 10. Experiencia de restauración en Obras Públicas

- Intervenciones en obras lineales. La recuperación de un territorio
- Actuaciones en calzadas y caminos históricos
- Restauración de acueductos y canales

PRÁCTICO

Práctica 1: Sistemas de catalogación territorial del patrimonio de la Obra Pública. Empleo de herramientas digitales de catalogación.

Práctica 2: Identificación y localización de obras públicas patrimoniales en el entorno cercano. Definición de características, valores y documentación del bien.

Práctica 3: Identificación de patologías y necesidades en casos concretos de obras públicas históricas.

Práctica 4: Propuesta de actuación y desarrollo de documentación proyectual para la intervención sobre una obra pública histórica.

Prácticas de campo: Presentación de casos reales de obras cuya observación y análisis fundamentan los conceptos teóricos de la asignatura y el desarrollo de los contenidos propuestos, en relación con las competencias que adquiere el alumno. Se realizará también visita a alguna obra en ejecución siempre que sea posible.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

ALZOLA, P. (2001): «Las obras públicas en España. Estudio histórico». Madrid, Colegio de Ingenieros de Caminos.

ARENAS DE PABLO, J.J. (2002): «Caminos en el aire: los puentes». Madrid, Colegio de Ingenieros de Caminos, Canales y Puertos.

FERNÁNDEZ CASADO, C. (1997). Madrid, Fundación Esteyco.

FERNANDEZ TROYANO, L (1999): Tierra sobre agua. Visión histórica universal de los puentes. Madrid. Colegio de Ingenieros de Caminos

GARCÍA DE MIGUEL, J.M. (2011): «La conservación del patrimonio de la obra civil al inicio del siglo XXI y sus riesgos». OP Ingeniería y Territorio. 92. Pp. 4-11.

GONZÁLEZ TASCÓN, I (2006) Ingeniería civil en España. Precedentes, historia y técnicas. Madrid. Ed. El Umbral

GONZÁLEZ TASCÓN, I. (2008): Ars Mechanicae. Ingeniería medieval en España. Madrid. Ministerio de Fomento

GONZÁLEZ TASCÓN, I. (2002): Artifex. Ingeniería romana en España. Ministerio de Fomento

GONZÁLEZ TASCÓN, I. (1998): Felipe II. Los ingenios y las máquinas. Ingeniería y obras públicas en la época de Felipe II. Madrid Sociedad Estatal para la Conmemoración de los Centenarios de Felipe II y Carlos V

GONZÁLEZ TASCÓN, I. (1996): Betancourt. Los inicios de la ingeniería moderna en Europa Madrid. Ministerio de Fomento

I Foro Patrimonio Cultural de la Obra Pública (2019) Madrid. Colegio de Ingenieros de Caminos, Canales y Puertos

NÁRDIZ, C. (2019) El paisaje en la ingeniería. Madrid. Ministerio de Fomento

AGUILÓ, M (2013) Qué significa construir. Claves conceptuales de la ingeniería civil. Madrid. Abada

GARCÍA, i. y GONZÁLEZ, I. (2004). Guía bibliográfica de la historia de la ingeniería civil. Madrid. Ed. El Umbral

NAVARRO VERA, J.R. (2011): «Los ingenieros de caminos y el patrimonio de la ingeniería: de Alejandro Millán a José A. Fernández Ordóñez». OP Ingeniería y Territorio, 92. Pp. 12-19.

VVAA (2022). Monográfico "El patrimonio cultural de la Obra Pública" en Revista de Obras Públicas nº 3633. 2022 enero-febrero. Colegio de Ing. De Caminos, Canales y Puertos

BIBLIOGRAFÍA COMPLEMENTARIA

BONET CORREA, A. (Dir.) (1980): «Bibliografía de arquitectura, ingeniería y urbanismo en España (1498-1880)». Madrid, Turner.

«Breve historia de la ingeniería española: trabajos originales, expresamente redactados... para su publicación con ocasión del II Congreso de Ingeniería» (1950). Madrid, Dossat.

JOSÉ ECHEGARAY, EDUARDO SAAVEDRA, JOSÉ TORÁN & M. LORENZO PARDO (1983): «Conferencias 1983». Madrid. Asociación Ingenieros de Caminos, Canales y Puertos.

«Curso de conferencias sobre historia de las obras públicas, desarrollados durante los meses de marzo a mayo de 1984» (1984). Madrid, Real Academia de Ciencias Exactas, Físicas y Naturales.

CIF: Q1818002

5/7

FERGUSON, E. (1992): «Engineering and the mind's eye». Cambridge, The MIT Press.

FLEMMING, A.P. & BROCKLEHURST, H. (1925): «A history of engineering». London, A.C. Black.

GARCÍA GARCÍA, I. & GONZÁLEZ TASCÓN, I. (2004): «Guía bibliográfica de la historia de la ingeniería civil». Madrid, Ediciones del Umbral.

MARTINEZ DE PISÓN, E. et al (2004): «La conservación del paisaje». Madrid, Fundación Biodiversidad.

NAVARRO VERA, J.R. (2009): «Pensar la ingeniería. Antología de textos de José Antonio Fernández Ordóñez». Madrid, Colegio de Ingenieros de Caminos.

ENLACES RECOMENDADOS

www.cehopu.cedex..es

www.traianus.net

www.juaneloturriano.com

www.ropdigital.es

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

El criterio de evaluación será la evaluación continua. El alumnado realizará una serie de prácticas en clase, siguiendo el desarrollo del temario. Los ejercicios de análisis, reflexión o aplicación de metodología serán de entrega obligatoria a través de PRADO Se calificarán como APTO o NO APTO. PORCENTAJE SOBRE CALIFICACIÓN GLOBAL: 40%

Se realizará también un trabajo de mayor extensión en grupo. En grupos de 3-4 alumnos se desarrollará una práctica que aborde la aplicación de la metodología aprendida sobre un caso real. Se entregará también a través de PRADO a final del curso. La práctica de grupo se calificará como APTO o NO APTO y será indispensable su superación para superar también la asignatura. PORCENTAJE SOBRE CALIFICACIÓN GLOBAL: 35%

Se realizarán dos pruebas teóricas. Una por cada bloque temático. Se valorarán entre 0-10 puntos. PORCENTAJE SOBRE CALIFICACIÓN GLOBAL: 25%

El cómputo global de la asignatura se realizará sumando los porcentajes obtenidos en cada parte.

EVALUACIÓN EXTRAORDINARIA

El alumno realizará un ejercicio teórico-práctico formado por dos partes:

1.- Examen escrito con preguntas sobre la materia aprendida durante el curso. Supondrá un 50%

de la nota.

2.- Prueba práctica. Se propondrá un caso práctico similar a los realizados durante el curso para su desarrollo aplicando los métodos desarrollados durante el curso. Supondrá un 50% de la nota.

EVALUACIÓN ÚNICA FINAL

El alumno realizará un ejercicio teórico-práctico formado por dos partes:

- 1.- Examen escrito con preguntas sobre la materia aprendida durante el curso. Supondrá un 50% de la nota.
- 2.- Prueba práctica. Se propondrá un caso práctico similar a los realizados durante el curso para su desarrollo aplicando los métodos desarrollados durante el curso. Supondrá un 50% de la nota.

INFORMACIÓN ADICIONAL

Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencionsocial/estudiantes-con-discapacidad).

