Guía docente de la asignatura

Productos Microbianos Empleados en la Industria Farmaceutica

Fecha última actualización: 15/07/2021 Fecha de aprobación por la Comisión

Académica: 15/07/2021

Máster		Máster Universitario en Investigación, Desarrollo, Control e Innovación de Medicamentos					
MÓ	Módulo d	Módulo de Docencia					
RAMA		Ciencias de la Salud					
CENTRO RESPONSABLE DEL TÍTULO		Escuela Internacional de Posgrado					
Semestre	Segundo	Créditos	3	Tipo	Optativa	Tipo de enseñanza	Presencial

PRERREQUISITOS Y/O RECOMENDACIONES

Los mismos del máster

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Máster)

Usos tradicionales de los microorganismos en la Industria Farmacéutica. Los microorganismos: fábricas vivas de macromoléculas.

Productos farmacéuticos obtenidos por ingeniería genética.

Productos farmacéuticos obtenidos a través de nuevas tecnologías.

Productos microbianos empleados en los excipientes de las formulaciones farmacéuticas.

Nuevos productos de origen microbiano empleados en Farmacia.

COMPETENCIAS

COMPETENCIAS BÁSICAS

- CB6 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

COMPETENCIAS GENERALES

- CG01 Hablar bien en público
- CG02 Capacitar a los alumnos a abordar problemas de forma científica, desde una perspectiva multidisciplinar, formulando hipótesis y objetivos para su resolución, extrayendo conclusiones fundadas que sean de aplicación en las ciencias farmacéuticas, biomédicas, tecnológicas y de la práctica farmacéutica, con especial énfasis en la investigación, desarrollo, control e innovación de productos farmacéuticos.
- CG03 Realizar investigación en cualquier entorno del sector farmacéutico y de la salud.
- CG05 Saber plantear un diseño experimental, comprender y resolver el análisis de los datos experimentales mediante programas computacionales e interpretar los resultados.
- CG06 Utilizar eficazmente los recursos informáticos para la documentación, búsqueda de datos, confección y presentación de trabajos de investigación en los campos de las ciencias farmacéuticas.
- CG07 Conocer los sistemas de gestión de la calidad que se pueden aplicar con relación a los ensayos de laboratorio para el control de calidad de fármacos, así como en el desarrollo de actividades de prevención frente a los riesgos debidos a usos de agentes químicos en el laboratorio.
- CG08 Realizar trabajos bibliográficos sobre distintas patologías y los correspondientes prototipos terapéuticos.
- CG17 Trabajar en equipos multidisciplinarios tanto a nivel de la industria farmacéutica como de organizaciones sanitarias.
- CG18 Ser capaces de presentar públicamente ideas, procedimientos o informes de investigación, comunicando sus conclusiones y promoviendo el uso racional del medicamento.
- CG4 Saber aplicar las técnicas de investigación, tanto metodológicas como tecnológicas, en distintas áreas de estudio y enseñar a redactar correctamente un trabajo científico, informe o protocolo, empleados asiduamente en la investigación de productos sanitarios.

COMPETENCIAS ESPECÍFICAS

- CE03 Utilizar eficazmente los recursos informáticos para la documentación, búsqueda de datos, confección y presentación de trabajos de investigación en los campos de las ciencias farmacéuticas.
- CE05 Saber cómo confeccionar y presentar comunicaciones científicas

irma (1): **Universidad de Granada**

• CE13 - Adquirir una completa visión de la extensa gama de productos microbianos con interés en la industria farmacéutica.

RESULTADOS DE APRENDIZAJE (Objetivos)

- Conocer a los microorganismos como fábricas vivas de macromoléculas.
- Obtener mediante técnicas de ingeniería genética productos farmacéuticos.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

Tema 1. Microbiología Industrial y Biotecnología.

Historia de la Microbiología Industrial. Biotecnología. Definición y conceptos. Etapas e hitos de la Biotecnología. Aplicaciones de la Biotecnología. Perspectivas de futuro.

Tema 2. Microorganismos industriales.

Características que deben reunir los microorganismos industriales. Grupos microbianos de interés industrial. Aislamiento y selección de microorganismos. Mantenimiento y conservación. Colecciones de cultivo. Mejora y desarrollo de cepas para uso industrial.

Tema 3. Productos microbianos de interés industrial.

Células microbianas. Metabolitos primarios y secundarios. Características generales. Trofofase e idiofase. Macromoléculas que sintetizan las células: enzimas y polisacáridos. Principales productos microbianos en la industria farmacéutica.

Tema 4. El microorganismo como producto farmacéutico

Preparados a base de microorganismos viables para reimposición y modificación de flora intestinal. Probióticos y prebióticos. La producción de levaduras como fuente de alimento. Las algas como complemento alimentario. Producción de proteínas unicelulares: síntesis microbiana de proteínas, fuente de energía, aceptación de proteínas unicelulares para uso humano.

Tema 5. Metabolitos primarios: Ácidos orgánicos y aminoácidos.

Funciones de los ácidos orgánicos en la industria farmacéutica. Producción industrial de ácidos orgánicos. Bioquímica de la producción del citrato por Aspergillus niger. Ácido glucónico. Producción de ácido láctico por Lactobacillus. Ácido acético. Ácidos tartárico, fumárico y málico. Aplicaciones de los aminoácidos en la industria alimentaria. Métodos de producción industrial de aminoácidos. Ácido glutámico. Ácido aspártico. Lisina. Metionina.

Tema 6. Otros metabolitos primarios: alcoholes, vitaminas, nucleótidos y nucleósidos.

Utilización sanitaria. Producción industrial de etanol. Condiciones de la fermentación y optimización del proceso. Fermentación por Saccharomyces cerevisae. Producción de vitaminas: vitamina B12 y riboflavina. Nucleótidos y nucleósidos. Aplicaciones en la industria farmacéutica

y métodos de producción

Tema 7. Metabolitos secundarios: antibióticos.

Tipos de antibióticos. Mecanismo de acción. Modelos de producción de antibióticos: fermentación en superficie y en profundidad, de hongos y de bacterias, extracelular e intracelular, estático o continuo, fases post-fermentación. La producción de bencilpenicilina, de estreptomicina y griseofulvina. Búsqueda y evaluación de nuevos antibióticos.

Tema 8. Polisacáridos microbianos.

Polisacáridos para preparación de vacunas. Producción de dextranos como sustitutivos del plasma, Leuconostoc mesenteroides y Minextranicus, producción de dextrano cíclico. Xantano, alginatos y otros polisacáridos.

Tema 9. Enzimas.

Producción de enzimas por fermentación. Enzimas de Estreptococos: estreptoquinasa y estreptodornas. Penicilinasas (Beta-lactamasas). Enzimas que descomponen la pectina. Proteinasas y amilasas. Glucosa oxidasa. Otros enzimas.

Tema 10. Vacunas.

Tipos de vacunas. Producción de vacunas virales. Tipos y producción de vacunas bacterianas. Control de calidad de vacunas. Otros tipos de vacunas.

Tema 11. Sueros.

Tipos de sueros. Producción de sueros.

Tema 12. Los microorganismos en la producción de medicamentos por Ingeniería Genética.

Modelos de producción de medicamentos por Ingeniería Genética: somatostatina, insulina, hormona del crecimiento, antígenos virales para vacunas, interferones, proteínas nuevas, etc. Citotóxicos antitumorales de origen microbiano. Otros compuestos.

PRÁCTICO

Tendrá un importante componente práctico, impartiéndose cinco horas de clases en el laboratorio donde se explicarán algunas de las principales técnicas de simulación sobre elaboración y biosíntesis de medicamentos con microorganismos, las empresas principales, los equipos y bioprocesos, los requisitos de esterilidad de la elaboración de productos de base microbiana y la legislación aplicable, normativas de correcta fabricación y regulación de dichos medicamentos.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

Genetically engineered Food Heller KJ. 2nd Ed. Willey-VCH. 2006.

Hanbook of Pharmaceutical Biotechnology. Gad, S.C. (ed). Wiley Interscience. 2007.

Hugo and Russell's Pharmaceutical Microbiology. 7th Edition. Stephen P. Denyer, Norman A. Hodges and Sean P. Gorman. Wiley-Blackwell. 2004.

Introducción a la Biotecnología. Thieman, W.J. y Palladino, M.A. Pearson, España. 2010.

Microbial Biotechnology Fundamentals of Applied Microbiology. Alexander N. Glazer, Hiroshi Nikaido Second Edition. Cambridge University Press. 2007.

Molecular Biotechnology: Principles & Applications of Recombinant DNA. 5th Edition. Bernard R. Glick and Jack J. Pasternak. ASM Press. 2017.

Pharmaceutical Biotechnology. G. Walsh. John Wiley & Sons. 2007.

Pharmaceutical Microbiology. Tim Sandle. Woodhead Publishing. 2015.

Pharmaceuticals from Microbes. The Bioengineering Perspective. Arora, D., Sharma, C., Jaglan, S., Lichtfouse, E. 2019.

Pharmacutical Biotechnology. Fundamentals and applications (3°ed) Crommelin, D.J.A. Sindelar, R.D. and Meibohm, B. (eds). New York. 2008.

BIBLIOGRAFÍA COMPLEMENTARIA

ENLACES RECOMENDADOS

http://microbiologia.ugr.es/

www.ugr.es/~eianez/Biotecnologia/introbiotec.htm

METODOLOGÍA DOCENTE

- MD01 Clases magistrales o lecciones teróricas.
- MD02 Seminarios, elaboración de trabajos encargados por el profesor y prácticas de laboratorio.
- MD03 Tutorías.
- MD04 Trabajo autónomo del estudiante.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

5/6

Se realizará una evaluación continua del aprendizaje de los estudiantes y se valorará su interés y la participación activa en las discusiones que se desarrollen en las clases.

Se valorará el contenido de los trabajos individuales y grupales realizados en las clases prácticas, en los seminarios y en las tutorías académicas.

El artículo 17 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que la convocatoria ordinaria estará basada preferentemente en la evaluación continua del estudiante, excepto para quienes se les haya reconocido el derecho a la evaluación única final.

EVALUACIÓN EXTRAORDINARIA

El artículo 19 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de evaluación continua. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de obtener el 100% de la calificación mediante la realización de una prueba y/o trabajo.

EVALUACIÓN ÚNICA FINAL

El artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que podrán acogerse a la evaluación única final, el estudiante que no pueda cumplir con el método de evaluación continua por causas justificadas.

Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura o en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de las clases o por causa sobrevenidas. Lo solicitará, a través del procedimiento electrónico, a la Coordinación del Máster, quien dará traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua.