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Abstract

The first objective of this paper is to provide a mathematical definition and implement
efficient algebraic operations with square sparse matrices of size 256. The operations needed the
most inmatrix algebra considered for implementation are: multiplication, transposing, summation
and subtraction.

Another necessity has arisen while working with sparse matrices which have so little
embedded information: mathematically defining and implementing an efficient representation
and manipulation of data provided by sparse matrices. This new data format will be called Sparse
Matrix Format (SMF) during this paper.

Taking notice of the sparsity attribute of the matrix will result in a more efficient ap-
proach which implies the development of specific applications that use a special data structure.

The necessity of more efficient operations has arisen while working with rawMRI Brain
Scan images. Most of the times this data needs a lot of processing in order to make it easier to read
and interpret by a medical doctor. One complete brain scan can contain up to 170 pictures, each
one of them corresponding to a horizontal section of the human head. A doctor may recommend a
MRI head scan if they suspect that a person has: blocked arteries, multiple sclerosis, eye or inner
ear issues, epilepsy, a brain tumor or stroke.

The effectiveness of multiplication algorithm and storing format is analyzed on two
working data sets: in the case of treatment imagines from Anonymous MRI Brain Scan Images
Database (The University of Granada) and on data from The University of Florida Sparse Matrix
Collection.
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Chapter 1

Introduction

When solving different problems from economy, technical fields, social environment, opti-
mization, as well as in modeling or simulating industrial and technological processes it is necessary to
determine the mathematical model that describes the problem itself. The description of such systems
leads to some mathematical systems which usually involves solving linear algebraic equation systems
in which the associated coefficient matrix is sparse (most of the coefficients are zero). From the
practical point of view the analysis of such systems produces very large mathematical models that
may involve linear algebraic equation systems that can include thousands of equations. From a com-
putational perspective, such systems require a lot of memory to represent them, and a lot of time to
provide a solution to the equation system.

Consequently, the mathematical models of many real processes imply a large number of
variables and constraints which contributes to the sparsity phenomenon of a matrix: Most of the
entries are zero and are not connected between each other.

Taking notice of the sparsity property of the matrix can result in a more efficient approach,
implying the development of specific applications that use a special data representation/structure. This
will save memory and reduce the run time.

The main purpose of this work is to give a mathematical definition and implementation of an
efficient computer representation of square sparse matrices. This format will be referred to as Sparse
Matrix Format (SMF) from now on. The second objective is to mathematically define and imple-
ment efficient algorithms for the associated operations to this particular matrix format: multiplication,
transposing, summation and subtraction.

Moreover, the SMF proposal is compared, in terms of memory use and run time, to the
classical matrix representation and associated operations to ensure its efficiency and its practical ap-
plicability.

To sum up the achievements to be presented in this work, a square sparse matrix of dimen-
sions n-by-n, with NZ non-zero elements, SMF data structure stores in memory 2*NZ+n entries in
comparison with the classical matrix format that stores n*n numbers which is greater than or equal to
NZ. Thus for matrices with NZ smaller than or equal to n*(n+1)/2 the SMF uses less or equal memory
compared to the classical matrix format. In practice the big sparse matrices have less than 3% (see
[1]) of the entries non-zero, so there is an obvious improvement in memory use. In terms of run time,
in image processing we have been able to achieve up to 75 times better timings.

The remaining of this chapter will detail what is a sparse matrix, where is it mostly used,
disadvantages of the standard format and what other formats have been proposed to represent sparse
matrices.
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1.1 Sparse matrix: definition, properties and application
In computer science having a matrix with a wide range of null values is different than having

a matrix with all elements non-zero. If the most elements of a matrix are zero, the matrix is called
sparse matrix in comparison with a dense matrixwhich has the majority of the elements different than
zero.

In order to determine if a matrix is sparse or not, it is required to introduce the notion of
sparsity of a matrix. The division result between the number of null-valued elements and the total
number of elements is defined as sparsity of the matrix (see [1]). On the other hand the density is
defined as the division between non-zero and total number of elements. In other words sparsity is
equal to 1 minus density of a matrix. Using this definitions, a matrix is sparse if its sparsity is greater
than 0.5.

In practical applications there are encountered large sparse matrices with non-zero entries
between 0.15% and 3%, the sparsity varies form 0.97 to 0.9985.

𝐴5∗5 =
⎡
⎢
⎢
⎢
⎣

0 0 𝐴13 0 0
0 0 𝐴23 𝐴24 0
0 0 0 0 0
0 𝐴42 𝐴43 0 0

𝐴51 0 0 0 𝐴55

⎤
⎥
⎥
⎥
⎦

(1.1)

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝐴) = (𝑛2) − NZ
𝑛2 = (52) − 7

52 = 18
25 = 0.72 > 0.5 (1.2)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) = NZ
𝑛2 = 7

25 = 0.28 (1.3)

A square matrix example of dimensions 5-by-5 and 7 non-zero elements out of 25 is that of
(1.1). The sparsity respectively density are calculated as shown in equations (1.2) and (1.3). Because
its sparsity value is greater than 0.5 the matrix is sparse.

Sparse matrices are encountered in modeling or simulating processes from different fields
like: industry, economics, technology, social, etc (see [1]). Sparse matrices are the core of solving
systems of linear equations. Some fields that widely use linear algebra represented by sparse matrices
are:

• modeling and simulation of large-scale systems: described by thousands of linear algebraic
equations in form of large sparse matrices

• computer graphics: adding and multiplying matrices is the most common operation in image
processing

• recommendation systems or search engines: for instance links on the web are described in a
sparse matrix, element (i, j) is non-zero if web page i has a link to web page j. Examples of this
such implementations: Google Ranking System or Facebook Friend Relations.

• machine learning: in applied machine learning large sparse matrices are often used, for instance
the correlation matrix or stochastic matrix whose edges define a relation between data points.

The last two examples are in fact based on the incidence matrix of a given directed graph.
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CHAPTER 1. INTRODUCTION

1.2 Inefficiency of standard representation and operations with
sparse matrices
In computers, the classical representation of a matrix (a bidimensional array) has been

proven to be inefficient for the case of large sparse matrices. The first disadvantage of such structure
is the uneconomical use of memory, the biggest part is allocated for useless data which is not carrying
any information from the mathematical perspective. Using the largest part of the allocated memory for
zero entries is not justified because they do not contribute to the result of the matrix operations such as
multiplication, summation, etc. At the same time this large number of zero-values increase the run time
of operations because of the repetitive summation and multiplication between zero values. Therefore
if amatrix is sparse, but classically represented, more processing time andmemory is inefficiently used
on the zero-elements of the matrix than on the useful information from the matrix. This inconvenient
is better observed as the size of the matrix increases.

Therefore large-scale systems demand for some alternative ways to represent sparse ma-
trices in a more compact manner. The main objective here is to not represent the null-values of the
matrix. Therefore, the storage format needs to incorporate both some way to identify the position in
the original matrix and the non-zero values. It is an advantage and often essential to use specific algo-
rithms and data structures that benefit from the structure of the matrix. Sparse data is easy to compress
and thus require significantly less memory. Some enormous sparse matrices are almost impossible to
manipulate using regular dense matrix algorithms.

1.3 Storing a sparse matrix
A matrix is typically stored in a two-dimensional array. Each entry in the array represents

an element aij of the matrix. The element is accessed by the two indices i and j. Formally, the row
is represented by i respectively the column by j. The numbering is done top to bottom for rows
respectively left to right for columns. For an n-by-n square matrix the required memory to store the
matrix in the conventional format is proportional to n.

When dealing with a sparse matrix, the memory requirement can be substantially reduced
by storing only the elements different than zero. Taking into consideration the number and the distri-
bution of non-zero elements, specific data structures can be used to save considerable memory when
compared to the traditional approach. The compromise is that accessing the individual elements be-
comes more difficult and helping structures are needed to be able to get back to the original matrix.

As in [2], considering the accessibility of the compressed form the formats can be divided
into two groups:

• easier value modification, harder element access: Dictionary of Keys (DOK) [3], List of Lists
(LIL) [4], Coordinate List (COO) [4]

• easier element access: Compressed Sparse Column[5], Compressed Sparse Row or Yale format
[5]. This formats support implementation of matrix operation.
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Chapter 2

Particular types of sparse matrices

There are types of sparse matrices that present some characteristics which are helpful in
defining new ways of storing the non-zero values of a matrix. This chapter will define a few particular
types of sparse matrices and suggestions on how to store them efficiently in the memory. Following
sub-chapters refer to these particular matrices: band matrix, diagonal matrix and permutation matrix.

2.1 Band matrix
One particular type of sparse matrix is the band matrix. In the case of band sparse matrix

the non-zero values are grouped around the main or second diagonal (see [6]). For instance the matrix
A of 5-by-8 dimensions:

𝐴5∗8 =
⎡
⎢
⎢
⎢
⎣

1 9 0 0 0 0 0 0
0 2 8 3 0 0 0 0
0 0 4 5 0 0 0 0
0 0 0 6 7 0 0 0
0 0 0 0 0 3 2 1

⎤
⎥
⎥
⎥
⎦

(2.1)

is a sparse matrix in which the useful elements are grouped on or near the main diagonal.
A group ia a non-zero consecutive entries in a given row. The goups of this matrix are

written in the following table:

Table 2.1: Groups

1 9 2 8 3 4 5 6 7 3 2 1
1st row 2nd row 3rd row 4th row 5th row

Using the information that the non-zero entries are grouped on the rows in a small range, it
is possible to define a new method to store a band matrix. For each row it is stored the column index
of the first non-zero entry and the column index of the last non-zero entry from that row (see Table
2.2). In a separate one-dimensional array the non-zero values (see [1]). Both Table 2.2 and Table 2.1
describe this format.

Table 2.2: Begin-end indexes for each row

group start index 0 1 2 3 5
group end index 1 3 3 4 7

It is observed that for each group of non-zero entries on a row it is stored in two one-
dimensional array the column index of the first respectively the last non-zero value. Because of this

5
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reason the values array stores the zero elements if there are in between non-zero entries. If on a row
we have two groups separated by zero, then the matrix can be separated in two band matrix, therefore
this method becomes.

For instance, for the band matrix A of example (2.1) with NZ = 12 (non-zero entries) this
storing method is more efficient than the coordinate format. If the matrix entries are stored on 4 byte
integers, then the coordinate format takes DIMcoord = 3 * NZ * 4 bytes = 3 * 12 * 4 bytes = 144 bytes
(see equation (3.7) below) while the total needed memory for this format is 88 bytes (see equation
(2.2)). Here is the general formula:

𝐷𝐼𝑀𝑏𝑎𝑛𝑑 = (𝐷𝐼𝑀𝑠𝑡𝑎𝑟𝑡+𝐷𝐼𝑀𝑒𝑛𝑑+𝐷𝐼𝑀𝑣𝑎𝑙)∗4𝑏𝑦𝑡𝑒𝑠 = (5+5+12)∗4𝑏𝑦𝑡𝑒𝑠 = 88 𝑏𝑦𝑡𝑒𝑠, (2.2)

where:

• DIMstart = 5 = length of the group start index array,

• DIMend = 5 = length of the group end index array,

• DIMval = 12 = length of the group array.

2.2 Diagonal matrix
Another particular sparse matrix is the diagonal one. It is only the case of square matrices

that have non-zero entries on the main or second diagonal. For the following matrix A:

𝐴6∗6 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 9 0 0 0 0
0 0 2 0 0 0
0 0 0 8 0 0
0 0 0 0 3 0
0 0 0 0 0 7

⎤
⎥
⎥
⎥
⎥
⎦

(2.3)

the representation method implies only storing the elements on the diagonal in an one-dimensional
array Adiag (see [1]):

𝐴𝑑𝑖𝑎𝑔 = [1, 9, 2, 8, 3, 7] (2.4)
Total number of used bytes to store data is 24:

𝐷𝐼𝑀𝐴𝑑𝑖𝑎𝑔
= 𝑙𝑒𝑛(𝐴𝑑𝑖𝑎𝑔) ∗ 4𝑏𝑦𝑡𝑒𝑠 = 6 ∗ 4𝑏𝑦𝑡𝑒𝑠 = 24 𝑏𝑦𝑡𝑒𝑠 (2.5)

In the case of having non-zero entries on the second diagonal, all the above statements are
still valid with one mention, the Adiag array will store the entries from the second diagonal.

2.3 Permutation matrix
The permutation matrix has on each row or column only a value of one, all the rest be-

ing zeros. This matrix is utilized in algebraic operations to permute the coordinates according to a
previously established model. For instance, considering following matrixM :

𝑀5∗5 =
⎡
⎢
⎢
⎢
⎣

0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

(2.6)

6



CHAPTER 2. PARTICULAR TYPES OF SPARSE MATRICES

and the vector X=[1, 2, 3, 4, 5], by multiplying the two, vector XP=[3, 4, 2, 1, 5] is obtained.
The elements of X were rearranged according to the values of one from matrixM.

In order to store such a matrix it is only necessary to know the size of the matrix and the
column index where the 1 is on each row (see [7]):

𝑀 = [3, 2, 0, 1, 4] (2.7)

Considering the above examples of different types of sparse matrices it can be stated that a
specific format for a specific type of matrix is far more efficient for storing it. In practice usually the
working set of data is from the same class with the same particularities.

7





Chapter 3

Compact formats for sparse matrices

In order to reduce the storage space used for a sparse matrix, many data structures have been
proposed. Specialized data structures reduce the required storage size by storing only the non-zero
values of the matrix. Using specialized formats for sparse matrices can improve both the run time
and storage space. This chapter describes different formats and the trade-off when choosing one over
another.

3.1 Dictionary of keys
We start with Dictionary of Keys (DOK) format [3]. This is implemented using a dictionary

that maps the (row, column) tuples to the value of the elements. The missing elements from the
dictionary are considered to be zero. This format is mostly used to incrementally construct a sparse
matrix in random order. It is not so efficient for iterating over non-zero elements in row/column order.
Dictionary of keys format is typically used to construct the matrix and then, for processing, it is first
converted to another more efficient format. For example, the matrix A of equation (1.1), has the DOK
as follows:

{(1, 3) ∶ 𝐴13; (2, 3) ∶ 𝐴23; (2, 4) ∶ 𝐴24; (4, 2) ∶ 𝐴42; (4, 3) ∶ 𝐴43; (5, 1) ∶ 𝐴51; (5, 5) ∶ 𝐴55} (3.1)

This sequence is constructed assigning for each pair (row index, column index) the non-zero
value of the matrix entry.

3.2 List of lists
The List of lists or LIL format (see [4]) consists of one list for each row of the matrix. Each

element encapsulates the column index and the value. For easier iteration this lists are ordered by the
column index. For example if A is the matrix of (1.3), then LIL format has the following structure:

Table 3.1: List of lists

[1] → [3, 𝐴13] → 𝑁𝑈𝐿𝐿
[2] → [3, 𝐴23] → [3, 𝐴24] → 𝑁𝑈𝐿𝐿
[3] → 𝑁𝑈𝐿𝐿
[4] → [2, 𝐴42] → [3, 𝐴43] → 𝑁𝑈𝐿𝐿
[5] → [1, 𝐴51] → [3, 𝐴55] → 𝑁𝑈𝐿𝐿

Each row of the matrix is represented as a row in the above table. It contains multiple tuples,
each consists of the column index and the non-zero value of the matrix entry.

9
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3.3 Coordinate list
COO or Coordinate list (see [4]) is implemented using a list of (row, column, value) tuples.

To improve access time the entries of the list can be kept sorted first by row, then by column. This
format is also good for incremental construction of the matrix.

It is also called aleatory sore format. Because each non-zero entry of the matrix is individ-
ually identified it is also possible that the order could be aleatory. The advantage of an aleatory order
is that the non-zero entries are added at the end without interfering with the rest or having to iterate
over some elements.

If the matrix is symmetric this format is simplified by using two lists: one for the non-zero
entries from the main diagonal and another for the ones above the diagonal (see [1]).

For example the matrix A of (1.3) has the following form:

{(1, 3, 𝐴13) → (2, 3, 𝐴23) → (2, 4, 𝐴24) → (4, 2, 𝐴42) → (4, 3, 𝐴43) → (5, 1, 𝐴51) → (5, 5, 𝐴55)}
(3.2)

Therefore besides the (row, column, value) tuple each node of the list also encapsulates a
pointer to the next node. Depending on the address length of the machine (32/64 bits) the pointer uses
4/8 bytes [1]. Considering 4-byte words on a 64-bit machine, the total number of words needed to
store this format as in (3.3).

𝐷𝐼𝑀𝐶𝑂𝑂 = 3 × 𝑁𝑍 + 2 × 𝑁𝑍 (data and pointer), (3.3)

where as before NZ represents the non-zero entries of matrix A.
The division between this format’s use of memory and the standard one as in (3.4). The

upper limit of density so that this format is still more efficient than the classical one, as it is given in
[1] is 0,2.

𝑟𝐶𝑂𝑂 = 5 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴), (3.4)

where density(A) is calculated using equation (1.3).

3.4 Coordinate format
The Coordinate format implies storing the sparse matrix entries as row index, column index

and the non-zero value. Considering the following matrix A:

𝐴5∗5 =
⎡
⎢
⎢
⎢
⎣

0 0 0 9 0
0 2 0 0 0
0 0 0 0 0
1 5 0 0 0
0 0 0 0 7

⎤
⎥
⎥
⎥
⎦

(3.5)

The density of this 5-by-5 dimensions matrix A with NZ=5 non-zero entries is:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) = NZ
𝑛2 = 5

52 = 5
25 = 0.25 (3.6)

Following [1], in order to represent matrixA in the coordinate format, three one-dimensional
array are defined as follows:

• row [ ] - stores the row number of the non-zero entry,

• col [ ] - stores the column number,

10
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• val [ ] - stores the actual value.

The coordinate format memory use is defined by equation (3.7). If values respectively
indexes are represented on 4 bytes words, matrix A takes 15 bytes.

𝐷𝐼𝑀𝐶𝑂𝑂 = 3 × 𝑁𝑍 words (3.7)

Table 3.2: Matrix A represented in Coordinate Format

ROW COL VAL
0 3 9
1 1 2
3 0 1
3 1 5
4 4 7

In order to perform operations with sparse matrices defined in this way, a very important
role is played by row and col arrays. For the result matrix array the three vectors must allocate enough
for the new entries that may appear.

In this way for summation of the sparse matrices defined in Table 3.3 and Table 3.4 below
is represented in Table 3.5.

Table 3.3: Matrix A represented in Coordinate Format

𝑅𝑂𝑊_𝐴 𝐶𝑂𝐿_𝐴 𝑉 𝐴𝐿_𝐴
0 0 -4
1 1 7
3 3 8

Table 3.4: Matrix B represented in Coordinate Format

𝑅𝑂𝑊_𝐵 𝐶𝑂𝐿_𝐵 𝑉 𝐴𝐿_𝐵
0 0 4
1 1 -7
2 1 8
3 1 5
3 2 6

Table 3.5: Result matrix C = A + B represented in Coordinate Format

𝑅𝑂𝑊_𝐶 𝐶𝑂𝐿_𝐶 𝑉 𝐴𝐿_𝐶
0 0 0
1 1 0
2 1 8
3 0 5
3 2 6
3 3 8
? ? ?
? ? ?

11
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Because it is assumed that there is no match between indexes of the two matrices, the result
vectors have a longer length than it is actually needed in this example. The unused cells are marked
in the result with ?.

Arrays ROW_C, COL_C and VAL_C have the length equal to 8 that is calculated using
equation (3.8).

𝑙𝑒𝑛(𝑅𝑂𝑊_𝐶/𝐶𝑂𝐿_𝐶/𝑉 𝐴𝐿_𝐶) = 𝑙𝑒𝑛(𝑅𝑂𝑊_𝐴) + 𝑙𝑒𝑛(𝑅𝑂𝑊_𝐵), (3.8)
where len is the function that returns the length of a one-dimensional array. For an array defined as
(3.9):

𝑖𝑛𝑡 𝑎[𝑛]; (3.9)
where n is the vector dimension, Len function is given by (3.10):

𝑙𝑒𝑛(𝑎) = 𝑛 + 1. (3.10)
Because this problem is addressed to sparse matrices only, naturally the zero-value entries

are eliminated, the final result being expressed in Table 3.6.

Table 3.6: Final result of summing sparse matrices A and B

𝑅𝑂𝑊_𝐶 𝐶𝑂𝐿_𝐶 𝑉 𝐴𝐿_𝐶
2 1 8
3 0 5
3 2 6
3 3 8
? ? ?
? ? ?
? ? ?
? ? ?

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐶) = 4 × 3
8 × 3 = 12

24 = 0.5 (3.11)

The same as Table 3.5 there are cells in Table 3.6 which are not used to store any information,
marked here with ?. According to equation (3.11), Table 3.5 describes a sparse matrix with a density
of 0.5. Obviously there is an inefficient use of memory. For instance if arrays ROW_A and ROW_B
have 3 respectively 5 used entries but they are defined of length 10, then the result array ROW_C will
be defined of length 20.

According to the minimization criterion for used memory, this approach is not optimal
because it requires more memory than used in the most of the cases. In order to achieve this goal, the
implementation of a format for sparse matrices will use dynamically allocated arrays, the associated
operation will generate arrays with a 100% use of memory.

In the case of multiplication or inverse it is possible that the result matrices will not respect
the condition for a sparse matrix.

3.5 Compressed sparse row (or Yale format)
The CSR or Compressed sparse row format as described in [5], is implemented so that the

matrix is represented by three one-dimensional arrays. This format has first been used in mid-1960s
and has been fully described in 1977 (see [5]). Considering a matrix M of size n-by-n, with NZ non-
zero elements, the three arrays (A, IA, JA) describing the matrix have the following meaning:

12
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• A is of length NZ (number of non-zero elements) and stores the non-zero elements in row-major
order

• IA is of length n+1 and it is defined recursively:
IA[0] = 0
IA[i] = IA[i] + number of non-zero elements on the i-th row.

• JA is of length NZ and it contains the column index for all non-zero elements from the original
matrix in a row-major order

For instance the non-zero elements form ith row in the original matrix are stored form
A[IA[i]] to A[IA[i+1]-1], including both ends. The column corresponding to each value in A is at
the same index in JA. This format uses less memory to store entries of a matrix only if condition
(3.12) is respected (see [1]).

NZ < 𝑛 × (𝑛 − 1) − 1
2 (3.12)

For example the square matrix A displayed in (3.13) of dimensions 4-by-4 and 4 non-zero
elements:

𝐴4∗4 =
⎡
⎢⎢
⎣

0 7 0 0
0 5 2 0
0 0 0 0
8 0 0 0

⎤
⎥⎥
⎦

(3.13)

it has the associated CSR format:

A = [7, 5, 2, 8]
IA = [0, 1, 3, 3, 4]
JA = [1, 1, 2, 0]

(3.14)

Knowing the three arrays A, IA and JA the exact position in the original matrix can be easily
calculated for every entry. For row number i=1 (counting rows starts from 0, not 1), the non-zero
elements are from A[IA[1]] to A[IA[1+1]-1] = A[1] to A[2], which corresponds to 5 and 2. For A[1]
= 5, the column index is JA[1] = 1 and for A[2] = 2, the column in the original matrix is JA[2] = 2.

Matrix A is sparse as it fulfills the constraint, sparsity(A) = 0.75. ThisCSR example contains
NZ*2+n+1 = 13 entries in comparison to the classical matrix format, which in this case has 16 entries.

3.6 Binary identified format
This method is based on the binary logic of the computing system. The non-zero entries are

saved in a primary memory zone (PZ) in form of an one-dimensional array of length NZ. The structure
of matrix is indicated using a binary sequence stored in a secondary memory zone (SZ), see [1] for
more details. For example, if we take the matrix (3.13), then:

𝑃𝑍 = [7, 5, 2, 8] (3.15)

𝑆𝑍 =
⎡
⎢⎢
⎣

0100
0110
0000
1000

⎤
⎥⎥
⎦

(3.16)

Matrix A is stored in row-major order, another possibility would be column-major order.
To reduce even more the memory needed to store the matrix, the secondary zone is bitwise.

13
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If a matrix A with dimensions of n-by-n, NZ non-zero entries and the element data type of
b bytes length, then the primary memory zone needs n*n*density(A) words of length b bytes. The
secondary memory zone needs (n*n)/(8*b) words. The total number of words (of 4 bytes) needed to
store matrix A using the two memory zones is 5. The formula is given as follows:

𝐷𝐼𝑀𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 𝑛2

8 × 𝑏( in words of b bytes) (3.17)

Because the matrix classical format uses DIMstandard = n*n words, the ratio between the
binary identified format and the standard format is:

𝑟 = 𝐷𝐼𝑀𝑏𝑖𝑛𝑎𝑟𝑦
𝐷𝐼𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

= 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 1
8 × 𝑏 (3.18)

Considering that entries inmatrixA are unsigned integers stored on 4 bytes each, then r=0.28
is calculated in (3.19), indicating that using this format the matrix uses approximately a quarter of the
original use of memory.

𝑟𝑀 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑀) + 1
8 × 4 = 0.25 + 1

32 ≃ 0.28 (3.19)

The upper limit of the density at which the binary format uses the same memory as the
standard format is 96% as described in [1] and can be calculated if r=1 following the equation (3.20).
For a matrix A if 15 out of 16 entries are non-zero, the binary format still uses less memory.

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)𝑚𝑎𝑥 = 1 − 1
8 × 𝑏

𝑓𝑜𝑟𝐴 ∶ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)𝑚𝑎𝑥 = 1 − 1
32 ≃ 0.96

(3.20)

This memory format is different than other because in the secondary zone there is allocated
memory for the zero-values also. The binary identification format is less efficient for very large ma-
trices with the sparsity value very big. Also the biggest challenge using this format is the complexity
of the matrix algorithms as summation or multiplying. For instance a 100-by-100 sparse matrix with
3% non-zero entries (NZ=300) using words of 4 bytes the binary form uses 613 words, as explained
in equation (3.21).

𝐷𝐼𝑀𝑏𝑖𝑛𝑎𝑟𝑦 = 1002 × 0.03 + 1002

8 × 4 = 612.5 (3.21)

3.7 Binary identified format improved
In order to make the method more efficient in practice when density of large sparse matrix

is less or equal to 3% another method to store using binary identification has been developed. The
difference from the first binary method is how data is organized in the secondary memory zone. The
SZ has a half-word structure, containing the column indexes of non-zero entries as well as some
control information for a faster identification of non-zero element position in the matrix [1]. The
word structure of SZ is shown in the following table.

14



CHAPTER 3. COMPACT FORMATS FOR SPARSE MATRICES

Table 3.7: SZ for the improved binary format

Word number Left half Right half
1 Row number Row number
2 Number of non-zero element
3 Non-zero entries on row no 1 Non-zero entries on row no 2
4 Non-zero entries on row no 3 Non-zero entries on row no 4
... ... ...
k Non-zero entries on row no n-1 Non-zero entries on row no n
k+1 Column index of 1st non-zero Column index of 2nd non-zero
k+2 Column index of 3rd non-zero etc.
... ... ...
j ... Column index of last non-zero

Table 3.8: Improved binary format SZ for matrix A

Word number 1 2 3 4 5 6
Value 4 4 1 2 0 1 1 1 2 1

In Table 3.8 it is considered that the non-zero entries are represented on 4 bytes, therefore a
half-word in SZ it is represented on 2 bytes. Using the storing format presented above the maximum
matrix size is 9999 rows or columns, with a maximum of 108 – 1 non-zero entries. In case of a square
matrix in the first word of SZ the matrix size will be stored.

The formula to calculate the number of words needed for the secondary memory zone is
given in (3.22). The value is rounded up to the next integer value.

𝐷𝐼𝑀𝑆𝑍 = 5 + 𝑛 + 𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)
2 (3.22)

The total word count needed for both primary and secondary memory zone is given in (3.23).

𝐷𝐼𝑀𝑏𝑖𝑛𝑎𝑟𝑦2 = 5 + 𝑛 + 3 × 𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)
2 (3.23)

For a 100-by-100 sparse matrix with 3% non-zero entries (NZ=300) using words of 4 bytes
the binary form uses 503 words (3.24), less memory than the first binary identified format which uses
613 words. It can be noticed a decrease of 18% in terms of used memory.

𝐷𝐼𝑀𝑏𝑖𝑛𝑎𝑟𝑦2 = 5 + 100 + 3 × 1002 × 0.03
2 = 503 (3.24)

The division between the updated binary identified format and the standard square matrix
format is given by:

𝑟𝑏𝑖𝑛𝑎𝑟𝑦2 = 3 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)
2 + 5 + 𝑛

2 × 𝑛2 (3.25)

For a n-by-n square sparse matrix, if r binary2 = 1 and n→∞, then the maximum value of
density(A) for the binary identified format is 0.66:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴)lim𝑛→∞ = 2
3(1 − 5 + 𝑛

2 × 𝑛2 ) = 0.666 = 66.6 (3.26)

For a sparse square matrix of 100-by-100 dimensions with an average of 66 non-zero entries
on each row, the above structure needs a total of 6600+(5+100+6600)/2 = 9952 words, with 0,6%
less than the 10.000words needed in the standard format. Because the density of a large sparse matrix
varies between 1% and 3% this format is proven to be very efficient regarding the used memory.
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3.8 Compact systematic format
This format assumes that the non-zero entries of a sparse matrix are stored in a certain row-

major order (see [1]). In this case it is not necessary to store both indexes row and column. For a
row-major order it is only needed the column indexes but also the beginning of each row needs to be
signaled.

In this case more storing formats can be used, the one presented is characterized by only
storing the column index of the needed element and a row separator, chosen arbitrarily to be -1 as
there cannot be such a column. The corresponded value for this inexistent column index represents
the row number of the following values. The final value-index is (0, -1).

For a matrix A as in (3.13), this format is described as follows:

Table 3.9: Compact systematic format for matrix A

Value 0 7 1 5 2 3 8 0
Column index -1 1 -1 1 2 -1 0 -1

For this memory format the maximum words to store a sparse matrix of n-by-n dimensions
is calculated with the formula below (3.27). This format is more efficient when compared to the
classical format if the density is less than 0.5.

𝐷𝐼𝑀𝑐𝑜𝑚𝑝𝑎𝑐𝑡 = 2 × (𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 𝑛 + 1) (3.27)

16



Chapter 4

Sparse Matrix Format

Considering all the attempts and approaches to find an efficient memory format for large
sparse matrices this note proposes a different representation format, that combines more of the above
formats. Next it is detailed a mathematical definition and then implementation of Sparse Matrix For-
mat, regarding only square matrices, this will be explained in first part. In the second part we also treat
the operations with this new format, also including the mathematics behind it and the implementation.
Addressed operations are: multiplication, transposing, summation and difference.

4.1 Mathematical fundamentals
There are two approaches for to represent sparse matrices:

• static approach, in which thememory allocation is done in the compilation phase. This approach
assumes that the programmer knows with a good precision the maximum number of non-zero
entries

• dynamic approach, in which the memory allocation is done during the execution phase of pro-
gram. In this case it is not necessary to know the number of non-zero elements. This approach
is, consequently, the one that we have implemented.

Usually for identifying the non-zero entries two indices are used, for row and for column.
Firstly, we propose a way to use only one index which contains information for both row and column
number (we “linearize” the matrix, converting it to a one dimensional array). For each non-zero entry
it is attached an integer number, an aggregated index, from which both the row and the column can
be determined. For a square matrix A of n-by-n dimensions, if entry Aij ≠ 0, i counting rows and j
columns both starting from 0 and ending at n-1, then the corresponding aggregated index is calculated
using the following formula:

𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗 = 𝑖 × 𝑛 + 𝑗 (4.1)

For example The Sparse Matrix Format for matrix A as in (4.2) of size 4 is described in
Table 4.1. This format stores only the non-zero entries from the vector-index-form of the matrix (see
Table 4.2).

𝐴4∗4 =
⎡
⎢⎢
⎣

0 0 5 0
0 4 0 0
1 0 0 0
0 0 0 9

⎤
⎥⎥
⎦

𝑖𝑛𝑑𝑒𝑥𝑒𝑠(𝐴) =
⎡
⎢⎢
⎣

0 1 2 3
4 5 6 7
8 9 10 11
12 12 14 15

⎤
⎥⎥
⎦

(4.2)
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Table 4.1: Sparse Matrix Format

Value 5 4 1 9
Cumulative index 2 5 8 15

Table 4.2: Vector form of Matrix A

Value 0 7 0 0 0 5 2 0 0 0 0 0 8 0 0 0
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The row index for any element of location k is calculated as the integer part (floor function)
of the ratio between the indexAij and n, size of the matrix, as showed below:

𝑟𝑜𝑤𝐴𝑖𝑗 = ⌊𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗
𝑛 ⌋ = 𝑓𝑙𝑜𝑜𝑟(𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗

𝑛 ). (4.3)

Where the floor function takes as an input a real number x and gives as output the greatest
integer less than or equal to x. For example floor(3,4) = 3.

The column index for any element of location k is calculated as the remainder of the division
between the indexAij and n, also known as the modulo function as showed in (4.4).

𝑐𝑜𝑙𝐴𝑖𝑗 = 𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗 − ⌊𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗
𝑛 ⌋ = 𝑖𝑛𝑑𝑒𝑥𝐴𝑖𝑗 modulo 𝑛 (4.4)

The advantage of this structure is that it uses only one index for each non-zero entry. On
the other hand there are two operations executed in order to find the row and column indexes.

The total number of words needed for this format to be stored in the memory can be calcu-
lated using the formula (4.5), while the total number of words to store SMF on the disk is a little bit
different and it is calculated using (4.6).

𝐷𝐼𝑀𝑆𝑀𝐹𝑚𝑒𝑚 = 2 × 𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 𝑛 (4.5)

𝐷𝐼𝑀𝑆𝑀𝐹𝑑𝑖𝑠𝑘 = 2 × 𝑛2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 1 (4.6)

The division between the memory requirements of SMF and the classical format is:

𝑟𝑆𝑀𝐹 = 2 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐴) + 1
𝑛2 (4.7)

The upper limit for the density of a matrix for which this format is still memory efficient is
density(A) = 0.5.

4.2 Implementation of Sparse Matrix Format
Considering a matrix M as in (4.8), the SMF implementation looks like (4.9). Therein, the

notation [p] is for pointer to another memory zone. Each row is a dynamically adjustable array of
tuples.

𝑀4∗4 =
⎡
⎢⎢
⎣

1 0 5 0
0 0 0 0
0 0 2 0
8 0 0 4

⎤
⎥⎥
⎦

(4.8)
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(2, [p]) → [(1, 0), (5, 2)]
(0, [p]) → NULL
(1, [p]) → [(2, 2)]
(2, [p]) → [(8, 0), (4, 3)]

(4.9)

For a more modular implementation there were defined classes used for storing data and
operations on data:

• entry class

– value: non-zero entry
– column index

• SMF class

– array of pointers to entry vectors
– array of lengths of entry vectors� �

1 class entry {
2 public:
3 value_type value;
4 size_type column;
5 ...
6 }
7
8 class SMF {
9 public:
10 index_type matrix_size;
11 entry** rows;
12 size_type* row_len;
13 index_type nnz = 0;
14 ...
15 }� �
4.3 From Standard to Sparse Matrix Format

The function StandardtoSMF is used to transform the Standard format to SMF. It is amember
function of the SMF class and it takes as an argument a matrix as a pointer to pointer to value_type.
In order to find the non-zero entries of the standard matrix it is necessary to iterate through all the
elements. Once a non-zero entry is found it is inserted in the SMF format along with the aggregated
index. Here is the implementation of such function:� �
1 // creating a SMF from standard
2 void StandardtoSMF(value_type** Standard){
3
4 //iterate through rows
5 for (value_type i = 0; i < matrix_size; ++i)
6
7 //iterate through columns
8 for (value_type j = 0; j < matrix_size; ++j)
9
10 //if entry is non-zero
11 if (Standard[i][j] != 0)
12
13 //insert to SMF value and aggregated index
14 this->insert(Standard[i][j], i*matrix_size + j);
15 }� �
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4.4 From Sparse Matrix Format to Standard
The function SMFtoStandard is used to make the translation between the two formats. As

SMF is implemented to only store each non-zero entry of the matrix and the composed index, for each
SMF entry the column and row have to be determined. Once this operations are done the element is
ready to take its position in the standard matrix. The implementation looks like:� �
1 // creating a square matrix_size matrix from SMF
2 value_type** SMFtoStandard(){
3 value_type **Standard , val;
4 index_type col;
5
6 //allocating dynamic array (of size=matrix_size)
7 //of pointers to element type (value_type)
8 //initializing all to 0
9 Standard = new value_type*[matrix_size]();
10
11 //allocate each row
12 for(index_type i = 0; i < matrix_size; ++i)
13 Standard[i] = new value_type[matrix_size];
14 // each i-th pointer is now pointing to dynamic array
15 // (size matrix_size) of actual value_type values
16
17 //iterating through rows
18 for(index_type i = 0; i < matrix_size; ++i)
19 //iterating through elements
20 for(index_type j = 0; j < row_len[i]; ++j){
21 //get col index
22 col = rows[i][j].getC();
23
24 //get value of entry
25 val = rows[i][j].getV();
26
27 //store the value at the precise indexes
28 Standard[i][col] = val;
29 }
30
31 return Standard;
32 }� �
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Operations with Sparse Matrix Format

In order to make the SMF a viable replacement for the standard matrix format, operations
with it have to be defined. As stated before, the second objective here is to mathematically define and
implement a solution for the associated operations of SMF. Operations considered to be implemented:
multiplication, transposing, summation and subtraction.

5.1 Summation of two SMF matrices
The summation algorithm described below is implemented as a member function in the

SMF class. It uses two position pointers to iterate through A’s row respectively B’s row called apos
and bpos:

1. For each row of both matrices (first while loop).

2. Reinitialize apos and bpos to 0 and get row length in len_rowA and len_rowB.

3. While the pointers did not reach the end of the row (second while loop).

4. Get the 2nd element of tuple entry, the column index in col_A and col_B.

5. By comparing the column index it is decided if entries must be inserted individually in the result
or added and then inserted in the result.

6. The remaining elements from A’s or B’s row are inserted (3rd and 4th while loops).� �
1 SMF add(SMF B){
2
3 SMF rez(matrix_size);
4
5 index_type apos, bpos;
6 index_type i = 0;
7
8 //same row for both matrices
9 while(i < matrix_size){
10 apos=0; bpos=0;
11
12 //get row A & B len
13 size_type len_rowA = row_len[i];
14 size_type len_rowB = B.row_len[i];
15
16 while (apos < len_rowA && bpos < len_rowB){
17
18 //get A's col
19 size_type A_col = rows[i][apos].getC();
20 //get B's col
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21 size_type B_col = B.rows[i][bpos].getC();
22
23 //if B's col index is smaller than A's col index
24 if(B_col < A_col){
25
26 //insert B's val & calc index
27 rez.insert(B.rows[i][bpos].getV(), i*matrix_size +

B_col);
28 bpos++;
29
30 //else if A's col is smaller than B's col
31 } else if(B_col > A_col){
32
33 //insert A's val & calc index
34 rez.insert(rows[i][apos].getV(),
35 i*matrix_size + A_col);
36 apos++;
37
38 //else same col -> add them
39 } else {
40
41 rez.insert(rows[i][apos].getV()+
42 B.rows[i][bpos].getV(),
43 i * matrix_size + A_col);
44 apos++;
45 bpos++;
46 }
47 }
48
49 //insert ramaining el from A
50 while(apos < len_rowA){
51
52 rez.insert(rows[i][apos].getV(),
53 i * matrix_size + rows[i][apos].getC());
54 apos++;
55 }
56
57 //insert ramaining el from B
58 while(bpos < len_rowB){
59
60 rez.insert(B.rows[i][bpos].getV(),
61 i * matrix_size + B.rows[i][bpos].getC());
62 bpos++;
63 }
64 i++;
65 }
66 return rez;
67 }� �
5.2 Subtraction of two SMF matrices

The subtraction algorithm described below is implemented as a member function in the
SMF class. It is very similar with the summation algorithm with the difference that if the column
indexes are different insert the inverse number (0 - val) in the result and if there are equal subtraction
of the two is done instead of summation.

1. For each row of both matrices.

2. Reinitialize apos and bpos to 0 and get row length in len_rowA and len_rowB.

3. While the pointers did not reach the end of the row.
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4. Get the 2nd element of tuple entry, the column index in col_A and col_B.

5. By comparing the column index it is decided if the inverse number (0 - val) must be inserted
individually in the result or subtracted and then inserted in the result.

6. The remaining elements from A’s or B’s row are inverted and inserted.

5.3 Transposing the SMF
The transposing algorithm is simply iterating through all rows, then through entries and

inserting to the result matrix the calculated aggregated index of the transpose:

1. For each row (the first for loop).

2. For each entry in the row (the 2nd for loop).

3. Get the value and column index of the entry.

4. Insert to the result matrix the transposed aggregated index.� �
1 SMF transpose(){
2
3 SMF rez(matrix_size);
4 value_type val;
5 index_type col;
6
7 //iterating through rows
8 for(index_type i = 0; i < matrix_size; ++i)
9
10 //iterating through elements
11 for(index_type j = 0; j < row_len[i]; ++j){
12
13 //get col index
14 col = rows[i][j].getC();
15
16 //get value of entry
17 val = rows[i][j].getV();
18
19 //insert to rez the new index for this value
20 rez.insert(val, col * matrix_size + i);
21 }
22
23 return rez;
24 }� �
5.4 Multiplication of two SMF matrices

The multiplication algorithm is one key operation when dealing with matrices. Considering
two matrices A and B that can be multiplied, a short description of the algorithm is below:

1. First transpose B for an easier iteration through columns, as SMF is row-major order, we need
B in column-major order.

2. Iterate through rows of A (first for loop).

3. For each row in A, iterate through columns of B, actually rows of B transpose (second for loop).

4. Reinitialize the local pointer of A’s row and B’s column and the sum to 0.
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5. While these pointers are within the range of A’s row length respectively B’s column length.

6. Compare A’s column with B’s row and skip elements in A’s row respectively B’s column until
they are equal.

7. If A’s column is equal to B’s row do the multiplication and add to sum.

8. If sum is different than 0 add it to result matrix with the aggregated index.

� �
1 SMF multiply(SMF B){
2
3 SMF rez(matrix_size);
4
5 index_type col_A, col_B, apos, bpos;
6 value_type sum;
7
8 SMF Bt = B.transpose();
9
10 //iterating through rows of A
11 for(index_type i = 0; i < matrix_size; ++i){
12
13 //iterating through cols of B
14 //as B is transpose iterate through rows
15 for(index_type j = 0; j < matrix_size; ++j){
16
17 //local pointer within A's row
18 apos = 0;
19 //local pointer within B's col
20 bpos = 0;
21 //sum of multiplication
22 sum = 0;
23
24 //iterating through elements of A's row & B's col
25 while(apos < row_len[i] && bpos < Bt.row_len[j]){
26
27 //get col index of A's entry
28 col_A = rows[i][apos].getC();
29 //get col index of B's entry
30 col_B = Bt.rows[j][bpos].getC();
31
32 //if A's col is smaller than B's row
33 //skip entry in A
34 if(col_A < col_B){
35 apos ++;
36
37 //if B's row is smaller than A's col
38 //skip entry in B
39 } else if (col_A > col_B){
40 bpos++;
41
42 //else both row and col are equal
43 //multiply the entries and add to sum
44 } else {
45 sum += rows[i][apos].getV() *
46 Bt.rows[j][bpos].getV();
47 apos++;
48 bpos++;
49 }
50 }
51
52 //if the sum is non-zero add to rezult
53 if (sum != 0)
54 rez.insert(sum, i * matrix_size + j);
55 }
56 }
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57 return rez;
58 }� �
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Chapter 6

Efficiency of Sparse Matrix Format

Validation of the SparseMatrix Format is done by calculating thememory and computational
efficiency with respect to the classical format and algorithms. Test data that will be analyzed has two
collection sources: The University of Florida Sparse Matrix Set taken from [8] and Anonymous MRI
Brain Scan Images Database (University of Granada) taken from public sources.

This chapter will discuss the memory efficiency in two cases: when storing the matrix on
disk and when manipulating the data in algorithms, as they are slightly different. In the second case a
few more information are needed in order to easily access and manipulate the data. Besides the use of
memory point of view, we also analyzed the computational efficiency of the Sparse Matrix Format.

6.1 The working sets

The University of Florida Sparse Matrix Collection
We will give a short description of this source. The SuitSparse Matrix Collection also

known as The University of Florida Sparse Matrix Collection is a huge and continuously growing
database of sparsematrices that are encountered in real applications. This collection is intensively used
by the numerical linear algebra community for performance evaluation of sparse matrix algorithms.
Following [8], the collection covers a large number of domains, divided in two classes, these are:

• matrices resulting from problems with a 2D or 3D geometrical representation:

– structural engineering

– computational fluid dynamics

– model reduction

– electromagnetics

– semiconductor devices

– thermodynamics

– computer graphics/vision

– robotics/kinematics

• matrices without geometrical source interpretation:
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– optimization

– circuit simulation

– economic and financial modeling

– theoretical and quantum chemistry

– chemical process simulation

– mathematics and statistics

– power networks

From the SuitSparse Matrix Collection (see [8]) were chosen in a random manner 97 matri-
ces. Size of this working set varies between 5 to 5000 (see Figures 6.2 and 6.1). It is worth mentioning
that in practice the size can reach even 200.000 in which case SMF has even higher efficiency.

Figure 6.1: Intervals of sizes

Figure 6.2: Matrix size range

Graph (6.2) plots the matrix size against the sample number, an easy way to visualize the
number of matrices in each interval of size ranges.
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From practical experiments the matrix density decreases as the matrix size increases. Figure
6.3 represents the size-density distribution. It can be easily notice how the left half of the chart with
sizes smaller than 500 have a higher density in comparison with the right half in which, with a few
exceptions, the density values are between 0 and 3%. Figure 6.3 also displays a trend line approxima-
tion of the data. It has been used a 5th degree polynomial equation to approximate. For a graph with
the matrices above the size of 500 with a linear trend see Figure 6.4.

Figure 6.3: Matrix size-density distribution

Figure 6.4: Zoomed matrix size-density distribution
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Anonymous MRI Brain Scan Images Database
A secondworking set isAnonymousMRI (Magnetic Resonance Imaging) Brain Scan Images

Database. But first it is needed to ensure that the representation of these images is a sparse matrix.
For instance the image in Figure 6.5 can be loaded as a pixel-value 2D array. A gray-scale image has
the pixel value represented on 8 bits:

• for white the pixel has a value of 255 (all bits are 1),

• for shades of gray the pixel has a value within the interval [254, 1],

• for black the value is 0.

As it can easily be noticed how the image below has most of the pixels black, so it can be
considered a sparse matrix of pixels. The density of this image is among the higher that it can be in a
MRI scan and it has a value of 25%. Therefore the compressed SMF brings a memory improvement.

Figure 6.5: Brain MRI Example

Let us explain how aMRI brain scan is produced. A full MRI brain scan contains between
90 and 170 images. The scan is done as sections from one extremity of the head to the other, density
of these images varies between 0% and 25% as it is illustrated in Figure 6.6. Below is showed every
other 10th image of a MRI scan containing 95 images.
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(a) 1st image (b) 10th image (c) 20th image

(d) 30th image (e) 40th image (f) 50th image

(g) 60th image (h) 70th image (i) 80th image

(j) Last image (95th)

Figure 6.6: Samples from a full MRI scan
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The best approximation of such evolution is a 2nd degree parabola as showed in Figure 6.7.
The turning point of this equation is the image with the most information corresponding to the middle
section of the head (Figure (6.6) between (e) and (f)). By plotting the sparsity - memory efficiency
tuples it is observed in Figure 6.8 the linear growth of the memory efficiency proportional to the
sparsity.

Figure 6.7: Sparsity of the MRI Brain Example

Figure 6.8: Memory efficiency of the MRI Eexample
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6.2 Storing sparse matrices on the file system
As the sparse matrices can sometimes reach enormous sizes a method to store these matrices

on the file system is needed. As described before, the SMF will be used, meaning that only the matrix
size and the value-index tuples will be stored.

Table 6.1: Matrix in the standard format (left) and the Sparse Matrix Format (right)

10 10
1 0 0 1 0 0 1 0 0 1 1 0 1 3 1 6 1 9
1 0 0 1 0 0 1 0 0 1 1 10 1 13 1 16 1 19
1 1 1 1 0 0 1 0 0 1 1 20 1 21 1 22 1 23 1 26 1 29
0 1 1 1 0 0 1 0 0 1 1 31 1 32 1 33 1 36 1 39
0 0 1 1 0 0 1 0 0 1 1 42 1 43 1 46 1 49
0 0 0 1 1 1 1 0 0 1 1 53 1 54 1 55 1 56 1 59
0 0 0 0 1 1 1 0 0 1 1 64 1 65 1 66 1 69
0 0 0 0 0 1 1 1 1 1 1 75 1 76 1 77 1 78 1 79
0 0 0 0 0 0 0 1 1 1 1 87 1 88 1 89
0 0 0 0 0 0 0 0 1 1 1 98 1 99

Case study - large square matrix from the SuitSparse Matrix Collection
In order to study the efficiency of SMF when storing a big square sparse matrix on the

disk, matrix A, with size of 20685 was chosen from the SuitSparse Matrix Collection. It describes a
Structural Problem system and it was published by Christian Damhaug (Oslo, Norway) in 2004 [8].
The matrix contains only binary values and it has a perfect pattern and value symmetry (see Figure
6.9). It has 2.454.957 non-zero values and a density of 0.5738% according to equation (6.1).

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑀) = 𝑁𝑍
𝑛2 × 100 = 2.454.957

20.6852 × 100 = 0.573763% (6.1)

Figure 6.9: Pattern of the matrix A
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The plain text file containing the above matrix on disk in the standard format (Table 6.1 -
left) takes 816MB while the plain text file with the SMF style (Table 6.1 - right) of the same matrix
occupies only 27,4MB. The second format represents an important improvement, taking 96.64%
less space on the disk when compared to the standard storing format. The improvement has been
determined according to equation (6.2).

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 100 − 27.4 × 100
816 = 96.64% (6.2)

6.3 SMF data structure implementation memory efficiency

Working set 1 - The University of Florida Collection
From the representation of the SMF memory efficiency against density (Figure 6.10) can

easily be noticed that the smaller density has the higher memory efficiency. For densities between
100% and 40%, which belong to small size matrices, the memory efficiency figures are negative,
meaning there is no improvement, on contrary the SMF representation for such matrices occupies
more memory. However in practice the densities are well below the 40% turning point that we can
notice in the graph, therefore the efficiency varies between 30% and 99.8%.

Figure 6.10: Memory efficiency against density

The total required memory for the new SMF data structure is calculated in several steps:

1. For each row a pointer to an array of entries and the length of the row are stored.

2. For each non-zero value it is used an entry structure (value and index), add to the total bytes
number sizeof(entry)*NZ.
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� �
1 index_type bytes_no(){
2 index_type rez = 0;
3
4 //for each row pointer to row and length = NZ for the row
5 rez += (sizeof(entry*) + sizeof(size_type)) * matrix_size;
6
7 //for each non-zero it is used an entry
8 rez += sizeof(entry) * NZ;
9
10 return rez;
11 }� �

For the SuitSparse working set the disk occupancy efficiency improvement in terms of
percentages calculated using (6.2) plotted against the matrix size clearly shows, with a very few ex-
ceptions of small size matrices, that SMF is very efficient compared to the standard format (Figure
6.11). Both Sparse Matrix Format and standard are storing data on the disk in plain text. Dividing
the working set into three categories by size, a trend in improvement is also observed. All of the
categories have some exceptions, the three cases are:

1. small size matrices: for n between 0 and 100 the improvement varies in the interval of 40%-
80%.

2. medium size matrices: for n between 100 and 1000 the improvement has higher percentages, it
varies in the interval of 80%-95%.

3. big size matrices: for n between 1000 and 5000 the improvement has the highest percentages,
it varies in the interval of 95%-99.5%.

Figure 6.11: Memory improvement against matrix size
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Working set 2 - Anonymous MRI Brain Scan Images Database
In Figure (6.12) it is compared the disk space needed for the standard way of storingmatrices

in plain text with the new Sparse Matrix Format. It can be easily observed how for the beginning and
end image sections of the human head MRI scan the SMF is more efficient when compared with the
middle section images where the information represents up to 25% of the image so less sparse. For
this full MRI scan example the total disk space taken by the 90 images in standard format is 8275 KB
compared with the SMF which takes 6596 KB, representing 79% of the original space on disk, so an
improvement of 21% (1679KB) for each scan. Scaling this percentage up to the whole database the
disk savings are considerable.

Figure 6.12: Memory on disk SMF and standard
Figure (6.13) represents the difference between standard and SMF. For instance, considering

one of the images at the beginning of the MRI, say the 5th one, the difference is of 45.000 bytes. In
contrast, considering one of the images closer to the middle, the 37th one, the difference is of only 90
bytes, which is insignificant. The difference is negative for a few matrices with a higher density for
which the standard matrix arrangement is memory efficient.

Figure 6.13: The difference between standard and SMF in Bytes
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6.4 Computational efficiency
Computational efficiency is proven comparing the classical format multiplication algorithm

with the SMF multiplication algorithm. For a better understanding of this operation let us consider
two square matrices A and B of size 4 to be multiplied with the result matrix C, as in (6.3). These
matrices are first written in the vector form (Table 6.2) and then put in a table in order to see the
multiplications that have to be done between the matrices entries (Table (6.2)).

𝐴4∗4 =
⎡
⎢⎢
⎣

2 0 0 3
0 1 0 0
0 0 0 0
0 7 5 0

⎤
⎥⎥
⎦

𝐵4∗4 =
⎡
⎢⎢
⎣

0 0 0 4
5 0 1 0
0 2 0 0
0 5 0 0

⎤
⎥⎥
⎦

𝐶4∗4 = 𝐴 ∗ 𝐵 =
⎡
⎢⎢
⎣

0 15 0 8
5 0 1 0
0 2 0 0
35 10 7 0

⎤
⎥⎥
⎦

(6.3)

Table 6.2: Vector format of matrices A and B

A 4x4 =
Value 2 0 0 3 0 1 0 0 0 0 0 0 0 7 5 0
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B 4x4 =
Value 0 0 0 4 5 0 1 0 0 2 0 0 0 5 0 0
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 6.3: Matrices A and B in the Sparse Matrix Format

A B
4 4

2 0 3 3 4 3
1 5 5 4

2 9
7 13 5 14 5 13

Table 6.4: Matrix multiplication in vector format

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 block
Value 0 0 0 4 5 0 1 0 0 2 0 0 0 5 0 0

0 2 0 0 0 8 0
1 0 0 0 0 0
2 0 0 0 0 0
3 3 0 15 0 0
4 0 0 0 0 0 1
5 1 5 0 1 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0 2
9 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0 3
13 7 35 0 7 0
14 5 0 10 0 0
15 0 0 0 0 0
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As the extended algorithm is very large when put in the table form of (6.4), it can be reduced
to Table (6.5) and the content being unchanged. Furthermore, it is possible to write only the lines that
have either the entry of matrix A or B non-zero like in Table (6.6) and still organizing it in blocks.

Table 6.5: Matrix multiplication in vector format

Index A B block
0 2 0 0 0 8 0

0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 3 0 15 0 0 4

0 15 0 8
4 0 0 0 0 0 5

1
5 1 5 0 0 0 0
6 0 0 0 0 0 1
7 0 0 0 0 0 0

5 0 1 0
8 0 0 0 0 0 0

2
9 0 0 0 0 0 2
10 0 0 0 0 0 0
11 0 0 0 0 0 0

0 0 0 0
12 0 0 0 0 0 0

3
13 7 35 0 7 0 5
14 5 0 10 0 0 0
15 0 0 0 0 0 0

35 10 7 0

Table 6.6: Compact matrix multiplication in vector format

Index A B block
0 2 0 0 0 8 0

03 3 0 15 0 0 4
00 115 20 38

4 0 0 0 0 0 5

15 1 5 0 0 0 0
6 0 0 0 0 0 1

45 50 61 73
9 0 0 0 0 0 2 280 90 100 110
13 7 35 0 7 0 5

314 5 0 10 0 0 0
1235 1310 147 150

The result matrix is obtained by summing the blocks on columns, each row in bold is part
of the result matrix C:

𝐶4∗4 =
⎡
⎢⎢
⎣

0 15 0 8
5 0 1 0
0 2 0 0
35 10 7 0

⎤
⎥⎥
⎦

, (6.4)
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with the Sparse Matrix Format:

Table 6.7: Result matrix C in the Sparse Matrix Format

C
4

15 1 8 3
5 4 1 6
2 9
35 12 10 13 7 14

A script written in Python was used to generate this simplified multiplication algorithm and
compared with the classical matrix multiplication algorithm.

Listing 6.1: Script generator� �
1 def new_mult_generator(n):
2 program = 'C = [0] * (%d*%d)' % (n, n);
3
4 for i in range(0, n*n):
5 block = int(i / n)
6 program += '''
7 if A[%d] != 0: ''' % i
8 for k in range(0, n):
9 b_indx = int((i * n + k) % (n*n))
10 program += '''
11 if B[%d] != 0: C[%d] += A[%d] * B[%d]''' % (b_indx , ((b_indx % n) +

(block * (n))), i, b_indx)
12
13 return program� �

In Figure (6.14) it is presented the time evolution of the classical multiplication algorithm
versus the new scripting method. The matrices used to make this comparison have a 20% density and
vary in size between 30 and 90. For each matrix the operation was repeated 500 times in order to
obtain a more precise average time. As it can be noticed, the standard multiplication algorithm has an
exponential trend, while the new method can be better approximated with a linear growth. For Small
size matrices the difference is insignificant while for bigger sizes the samemultiplication repeated 500
times results in a huge difference. In practice this is the most encountered case, repeated operation
with the same type of matrix and same particularities.

Figure 6.14: The time needed for 500 multiplications with the scripting vs classical method
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The graph of Figure (6.15) represents the average time difference in seconds for the operation
on matrices raging from 30 to 90 in size. Taking advantage of the particular type of matrix and of its
sparsity, the new algorithm provides an improvement up to 0.45 seconds for the same operation on
the same data.

Figure 6.15: The time difference between average classical and scripting algorithm

The best approximation for such a trend is a 2nd degree equation. For this benchmark set of
sparse matrices (sizes 30 to 90, 20% density) the time difference of 500 multiplication of each matrix
is 70 minutes. Therefore the script as it was generated in listing (6.1) is proven to be more efficient
for matrices with the presented constraints.
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Chapter 7

Conclusions and Future Work

The objective of this memoir was to find a more efficient way of representing, manipulating
and process the data from a particular type of matrix: the sparse matrix.

On one hand such data structures are encountered as the analysis output of problems from
economy, technical fields, optimization, process functionality, under the form of a mathematical sys-
tem. Solving or modeling this set of equations often implies using sparse matrices.

On the other hand some types of images represented as a matrix turn out to be sparse because
of the high number of a constant color and very little information embedded, such as theMRI grayscale
head images where most of the pixels are black (have the value equal to 0) and the rest carry the
information.

Taking into consideration the sparsity character of the matrix will result in a more efficient
approach which implies the development of specific applications that use a special data structure. This
will save memory and reduce the run time needed for the operations with it.

The domains that produce sparsematrices and use them to solve, model or simulate a system:

• computational fluid dynamics

• model reduction

• thermodynamics

• computer graphics

• optimization

• circuit simulation

• economic and financial modeling

• mathematics and statistics

• power networks

• quantum computing simulation

The input data used for this paper was divided in twoworking sets with two different sources:
TheUniversity of Florida SparseMatrix Collection andAnonymousMRI Brain Scan Images Database
(The University of Granada).

The results of the work are: a definition and implementation of a new format for the square
sparse matrices and the associated operations for it. The effectiveness of multiplication algorithm
and storing format was analyzed on the two working sets and compared with the classical storing
and operations of matrices. The new approach has been proven to bring a considerable improvement
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when working with sparse matrices. Further research paths will consider the matrices in which the
most encountered value is not zero.

As for future work, we plan to apply SMF matrices to simulate quantum computing algo-
rithms in traditional computers, which is becoming an outstanding problem that requires optimal
memory and run time huge-sized matrix representations of sparse matrices.
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Sparse Matrix Format class

� �
1 #include "pch.h"
2 #include <cmath >
3 #include <cstring >
4 #include <stdio.h>
5 #include <iostream >
6 #include <cstddef >
7 #include <fstream >
8 #include <chrono >
9 #include <string >
10 #include <windows.h>
11 #include <cstdlib >
12
13
14 #include <opencv2/core/core.hpp>
15 #include <opencv2/highgui/highgui.hpp>
16
17 #define PACK( class_to_pack ) __pragma( pack(push , 1) ) class_to_pack

__pragma( pack(pop) )
18
19 #define size_type unsigned
20 #define value_type double
21 #define index_type unsigned long
22
23 using namespace cv;
24 using namespace std;
25 using namespace std::chrono;
26
27 #pragma pack(push , 1)
28 class entry {
29 public:
30 value_type value;
31 size_type column;
32
33 entry() :value(-1), column(-1) {};
34 entry(value_type v, size_type c) : value(v), column(c) {};
35 value_type getV() {
36 return value;
37 }
38
39 size_type getC() {
40 return column;
41 }
42
43 void setV(value_type v) {
44 value = v;
45 }
46
47 void setC(size_type c) {
48 column = c;
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49 }
50
51 void print() {
52 cout << '(' << (int)this->getV() << ", " << (int)this->getC()

<< ')';
53 }
54 };
55 #pragma pack(pop)
56
57 #pragma pack(push , 1)
58 class SMF {
59 public:
60 index_type matrix_size;
61 entry** rows;
62 size_type* row_len;
63 index_type nnz = 0;
64
65 SMF(index_type s) {
66 rows = new entry*[s] {nullptr};
67 row_len = new size_type[s]{ 0 };
68 matrix_size = s;
69 }
70
71 ~SMF() {
72 for (index_type i = 0; i < matrix_size; i++)
73 delete[] rows[i];
74 delete [] row_len;
75 }
76
77 void insert(value_type val, index_type index) {
78 //insert only if val is non-zero
79 if (val != 0) {
80 //calculate row
81 size_type row_no = index / matrix_size;
82
83 //calculate col
84 size_type col_no = index % matrix_size;
85
86 nnz++;
87
88 //if it is the first elem in the row
89 if (row_len[row_no] == 0) {
90 row_len[row_no]++;
91 //allocate for one entry and set values
92 entry* entr_vec = new entry;
93
94 entr_vec[0].setC(col_no);
95 entr_vec[0].setV(val);
96
97 rows[row_no] = entr_vec;
98 }
99 else {
100 //allocate +1 size and find position to insert the

entry
101 size_type i = 0; //to iterate over col in row
102 index_type aux_col = rows[row_no][i].column;
103 while (col_no > aux_col && i < row_len[row_no]) {
104 i++;
105 aux_col = rows[row_no][i].getC();
106 }
107
108 //if same col do not allocate more , just replace value
109 if (rows[row_no][i - 1].getC() == col_no) {
110 rows[row_no][i - 1].setV(val);
111 }
112 else {
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113 //alocate +1 and increase row_size
114 row_len[row_no]++;
115 entry* new_r = new entry[row_len[row_no]];
116
117 //memcpy the values up to position i
118 memcpy(new_r, rows[row_no], i * sizeof(entry));
119
120 //set values in of pos i, the new_el
121 new_r[i].setC(col_no);
122 new_r[i].setV(val);
123
124 //copy the rest
125 memcpy(new_r + i + 1, rows[row_no] + i, (row_len[

row_no] - i - 1) * sizeof(entry));
126
127 delete[] rows[row_no];
128 rows[row_no] = new_r;
129 }
130 }
131 }
132 }
133
134 void print() {
135
136 for (index_type i = 0; i < matrix_size; i++) {
137 cout << "[" << (int)i << "]: ";
138 cout << "len=" << (int)row_len[i] << " ";
139 for (index_type j = 0; j < row_len[i]; j++) {
140 rows[i][j].print();
141 cout << ' ';
142 }
143 cout << endl;
144 }
145 }
146
147 SMF add(SMF B) {
148 SMF rez(matrix_size);
149 //for each row
150
151 index_type apos, bpos;
152 index_type i = 0;
153
154 //same row for both matrices
155 while (i < matrix_size) {
156 apos = 0; bpos = 0;
157 //get row A & B len
158 size_type len_rowA = row_len[i];
159 size_type len_rowB = B.row_len[i];
160
161 while (apos < len_rowA && bpos < len_rowB) {
162
163 //get A's col
164 size_type A_col = rows[i][apos].getC();
165 //get B's col
166 size_type B_col = B.rows[i][bpos].getC();
167
168 //if B's col index is smaller than A's col index
169 if (B_col < A_col) {
170 //insert B's val & calc index
171 rez.insert(B.rows[i][bpos].getV(), i*matrix_size +

B_col);
172 bpos++;
173 //else if A's col is smaller than B's col
174 }
175 else if (B_col > A_col) {
176 //insert A's val & calc index
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177 rez.insert(rows[i][apos].getV(), i*matrix_size +
A_col);

178 apos++;
179 //else same col -> add them
180 }
181 else {
182 rez.insert(rows[i][apos].getV() + B.rows[i][bpos].

getV(), i * matrix_size + A_col);
183 apos++;
184 bpos++;
185 }
186 }
187 //insert ramaining el from A
188 while (apos < len_rowA) {
189 rez.insert(rows[i][apos].getV(), i * matrix_size + rows

[i][apos].getC());
190 apos++;
191 }
192
193 //insert ramaining el from B
194 while (bpos < len_rowB) {
195 rez.insert(B.rows[i][bpos].getV(), i * matrix_size + B.

rows[i][bpos].getC());
196 bpos++;
197 }
198
199 i++;
200 }
201
202 return rez;
203 }
204
205 SMF subtract(SMF B) {
206 SMF rez(matrix_size);
207 //for each row
208
209 index_type apos, bpos;
210 index_type i = 0;
211
212 //same row for both matrices
213 while (i < matrix_size) {
214 apos = 0; bpos = 0;
215 //get row A & B len
216 size_type len_rowA = row_len[i];
217 size_type len_rowB = B.row_len[i];
218
219 while (apos < len_rowA && bpos < len_rowB) {
220
221 //get A's col
222 size_type A_col = rows[i][apos].getC();
223 //get B's col
224 size_type B_col = B.rows[i][bpos].getC();
225
226 //if B's col index is smaller than A's col index
227 if (B_col < A_col) {
228 //insert 0 - B's val & calc index
229 rez.insert(0 - B.rows[i][bpos].getV(), i*

matrix_size + B_col);
230 bpos++;
231 //else if A's col is smaller than B's col
232 }
233 else if (B_col > A_col) {
234 //insert 0 - A's val & calc index
235 rez.insert(0 - rows[i][apos].getV(), i*matrix_size

+ A_col);
236 apos++;
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237 //else same col -> subtract
238 }
239 else {
240 rez.insert(rows[i][apos].getV() - B.rows[i][bpos].

getV(), i * matrix_size + A_col);
241 apos++;
242 bpos++;
243 }
244 }
245 //insert ramaining el from A
246 while (apos < len_rowA) {
247 rez.insert(0 - rows[i][apos].getV(), i * matrix_size +

rows[i][apos].getC());
248 apos++;
249 }
250
251 //insert ramaining el from B
252 while (bpos < len_rowB) {
253 rez.insert(0 - B.rows[i][bpos].getV(), i * matrix_size

+ B.rows[i][bpos].getC());
254 bpos++;
255 }
256
257 i++;
258 }
259
260 return rez;
261 }
262
263 SMF transpose() {
264 SMF rez(matrix_size);
265 value_type val;
266 index_type col;
267
268 //iterating through rows
269 for (index_type i = 0; i < matrix_size; ++i)
270
271 //iterating through elements
272 for (index_type j = 0; j < row_len[i]; ++j) {
273
274 //get col index
275 col = rows[i][j].column;
276
277 //get value of entry
278 val = rows[i][j].value;
279
280 //insert to rez the new index for this value
281 rez.insert(val, i * matrix_size + col);
282 }
283
284 return rez;
285 }
286
287 index_type bytes_no() {
288 index_type rez = 0;
289
290 //for each row pointer to entry and length=nnz for the row
291 rez += (sizeof(entry*) + sizeof(size_type)) * matrix_size;
292
293 //for each non-zero it is used an entry
294 rez += sizeof(entry)*nnz;
295
296 return rez;
297 }
298
299 // creating a square matrix_size matrix from SMF
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300 value_type** SMFtoStandard() {
301 value_type **Standard , val;
302 index_type col;
303
304 //allocating dynamic array (of size=matrix_size)
305 //of pointers to element type (value_type)
306 //initializing all to 0
307 Standard = new value_type*[matrix_size]();
308
309 //allocate each row
310 for (index_type i = 0; i < matrix_size; ++i)
311 Standard[i] = new value_type[matrix_size];
312 // each i-th pointer is now pointing to dynamic array (size

matrix_size) of actual value_type values
313
314 //iterating through rows
315 for (index_type i = 0; i < matrix_size; ++i)
316 //iterating through elements
317 for (index_type j = 0; j < row_len[i]; ++j) {
318 //get col index
319 col = rows[i][j].getC();
320
321 //get value of entry
322 val = rows[i][j].getV();
323
324 //store the value at the precise indexes
325 Standard[i][col] = val;
326 }
327
328 return Standard;
329 }
330
331 void StandardtoSMF(value_type** Standard) {
332
333 //iterate through rows
334 for (index_type i = 0; i < matrix_size; ++i)
335
336 //iterate through columns
337 for (index_type j = 0; j < matrix_size; ++j)
338
339 //if entry is non-zero
340 if (Standard[i][j] != 0)
341
342 //insert to SMF value and aggregated index
343 this->insert(Standard[i][j], i * matrix_size + j);
344 }
345
346 SMF multiply(SMF B) {
347 SMF rez(matrix_size);
348
349 index_type col_A, col_B, apos, bpos;
350 value_type sum;
351
352 SMF Bt = B.transpose();
353
354 //iterating through rows of A
355 for (index_type i = 0; i < matrix_size; ++i) {
356
357 //iterating through cols of B
358 //as B is transpose iterate rows
359 for (index_type j = 0; j < matrix_size; ++j) {
360
361 //local pointer within A's row
362 apos = 0;
363 //local pointer within B's col
364 bpos = 0;
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365 //sum of multiplication
366 sum = 0;
367
368 //iterating through elements of A's row & B's col
369 while (apos < row_len[i] && bpos < Bt.row_len[j]) {
370
371 //get col index of A's entry
372 col_A = rows[i][apos].getC();
373 //get col index of B's entry
374 col_B = Bt.rows[j][bpos].getC();
375
376 //if A's col is smaller than B's row
377 //skip entry in A
378 if (col_A < col_B) {
379 apos++;
380 //if B's row is smaller than A's col
381 //skip entry in B
382 }
383 else if (col_A > col_B) {
384 bpos++;
385 //else both row and col are equal
386 //multiply the entries and add to sum
387 }
388 else {
389 sum += rows[i][apos].getV() * Bt.rows[j][bpos].

getV();
390 apos++;
391 bpos++;
392 }
393 }
394 //if the sum is non-zero add to rezult
395 if (sum != 0)
396 rez.insert(sum, i * matrix_size + j);
397 }
398 }
399 return rez;
400 }
401
402 double density() {
403 double rez = 0;
404
405 rez = ((double)((double)nnz / (double)(matrix_size*matrix_size)

)) * 100;
406
407 return rez;
408 }
409 };
410 #pragma pack(pop)
411
412 void standardMultiply(value_type** mat1, value_type** mat2, value_type

** mat3, size_type m_size) {
413
414 for (index_type r = 0; r < m_size; r++) {
415 for (index_type c = 0; c < m_size; c++) {
416 for (index_type in = 0; in < m_size; in++) {
417 mat3[r][c] += mat1[r][in] * mat2[in][c];
418 }
419 }
420 }
421 };
422
423 int main() {
424 Mat image;
425 image = imread("brain1.jpg", CV_LOAD_IMAGE_COLOR); // Read the

file
426
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427 if (!image.data) // Check for invalid
input

428 {
429 cout << "Could not open or find the image" << std::endl;
430 return -1;
431 }
432
433 namedWindow("Display window", WINDOW_AUTOSIZE); // Create a window

for display.
434 imshow("Display window", image); // Show our image

inside it.
435
436 value_type **im_mat;
437 im_mat = new value_type*[image.cols];
438 for (int i = 0; i < image.cols; i++)
439 im_mat[i] = new value_type[image.rows];
440
441 for (int i = 0; i < image.cols; i++) {
442 for (int j = 0; j < image.rows; j++) {
443 im_mat[i][j] = image.at<uchar >(i, j);
444 }
445 }
446
447 SMF brain(image.rows);
448 brain.StandardtoSMF(im_mat);
449 cout << brain.density() << "%" << endl;
450
451 size_type size = 0;
452 index_type count = 0;
453 value_type nr;
454
455 high_resolution_clock::time_point t1;
456 high_resolution_clock::time_point t2;
457
458 for (unsigned fil = 2; fil <= 111; fil++) {
459 string name = "in", name1 = "out";
460 name = name + to_string(fil) + string(".txt");
461 name1 = name1 + to_string(fil) + string(".txt");
462
463 cout << name << ' ' << name1 << endl;
464
465 fstream myinput(name, ios_base::in);
466
467 if (myinput) {
468 fstream myoutput(name1, ios_base::out);
469 while (myinput >> size) {
470
471 myoutput << size << ' ' << '\n';
472 nr_mat++;
473
474 count = 0;
475 total = (size * size) - 1;
476 //then read elements
477 while (myinput >> nr && count < total) {
478 //standard[count / size][count % size] = nr;
479 if (nr != 0) {
480 //test.insert(nr, count);
481 myoutput << nr << ' ' << count << ' ';
482 }
483 count++;
484 }
485 myoutput << '\n';
486 }
487 } else {
488 cout << "Problem opening file " << name << "\n";
489 }
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490 }
491
492 fstream myoutput("res.txt", ios_base::out);
493 myoutput << "name | Size" << endl;
494 myoutput.flush();
495
496 index_type index = 0;
497 double time_imp = 0, mem_imp = 0;
498 string name;
499 for (unsigned fil = 1; fil <= 112; fil++) {
500 //name = "im_smf" + to_string(fil) + string(".txt");
501 name = "in" + to_string(fil) + string(".txt");
502
503 fstream myinput(name, ios_base::in);
504
505 if (myinput.is_open()) {
506 myinput >> size;
507 myinput.flush();
508
509 SMF test(size);
510 value_type** standard;
511 standard = new value_type*[size]();
512 for (unsigned i = 0; i < size; i++)
513 standard[i] = new value_type[size]();
514
515 //then read elements
516 index = 0;
517 while (!myinput.eof()) {
518 myinput >> nr >> index;
519 standard[index / size][index % size] = nr;
520 if (nr != 0)
521 test.insert(nr, index);
522 }
523
524 mem_imp = (double)(100 - (double)((double)test.bytes_no()
525 / (double)(size * size * sizeof(value_type))) * 100);
526 //test.print();
527 t1 = high_resolution_clock::now();
528 test.multiply(test);
529 t2 = high_resolution_clock::now();
530
531 auto duration = duration_cast <microseconds >(t2 - t1).count

();
532 auto old = duration;
533
534 value_type** mat3 = new value_type*[size];
535 for (unsigned i = 0; i < size; i++)
536 mat3[i] = new value_type[size];
537
538 t1 = high_resolution_clock::now();
539 standardMultiply(standard , standard , mat3, size);
540 t2 = high_resolution_clock::now();
541
542 for (unsigned i = 0; i < size; i++)
543 delete[] mat3[i];
544 delete[] mat3;
545
546 duration = duration_cast <microseconds >(t2 - t1).count();
547 time_imp = (double)(100 - ((double)old / (double)duration)

* 100);
548
549 myoutput << size << ' ' << test.nnz << ' ' << test.density

() << ' ' << mem_imp << ' ' << time_imp << endl;
550 myoutput << name << ' ' << size << endl;
551 myoutput.flush();
552 myinput.close();
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553 }
554 else {
555 cout << "Problem opening file " << name << "\n";
556 }
557 }
558
559 return 0;
560 }� �
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New multiplying algorithm

� �
1 import sys
2 import time
3 from random import randint
4 import itertools
5
6 def new_mult_generator(n):
7 program = 'C = [0] * (%d*%d)' % (n, n)
8
9 for i in range(0, n*n):
10 block = i / n
11
12 program += '''
13 if A[%d] != 0:''' % i
14
15 for k in range(0, n):
16 b_indx = (i * n + k) % (n*n)
17
18 program += '''
19 if B[%d] != 0:
20 C[%d] += A[%d] * B[%d]''' % (b_indx , k + (block * n), i, b_indx

)
21
22 return program
23
24 def classical_mult(A, B, n):
25 C = [0] * (n*n)
26 for i in range(0, n):
27 for j in range(0, n):
28 for k in range(0, n):
29 C[i*n + j] += A[i*n + k]*B[k*n + j]
30
31 if __name__ == '__main__':
32 max_iterations = 2000
33 print('n;new;classical')
34 for n in range(10, 150):
35 A = [0] * (n*n)
36 B = [0] * (n*n)
37
38 for k in range(0, n):
39 A[k] = randint(0, 255)
40 B[k] = randint(0, 255)
41
42 program = compile(new_mult_generator(n), 'mult', 'exec')
43
44 start = time.time()
45 for _ in itertools.repeat(None, max_iterations):
46 exec(program)
47
48 new_time = (time.time() - start) / max_iterations
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49
50 start = time.time()
51 for _ in itertools.repeat(None, max_iterations):
52 classical_mult(A, B, n)
53
54 classical_time = (time.time() - start) / max_iterations
55 print(str(n)+';'+str(new_time)+';'+str(classical_time))� �
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