MODELOS MATEMÁTICOS DE LA FÍSICA

MÓDULO	I. TÉCNICAS AVANZADAS									
MATERIA	MODELOS MATEMÁTICOS DE LA FÍSICA									
SEMESTRE	SEGUNDO									
CRÉDITOS	8									
COORDINA	UNIVERSIDAD DE GRANADA									
ENSEÑANZA	PRESENCIAL									
UNIVERSIDADES EN LAS QUE SE IMPARTE	UNIVERSIDAD DE GRANADA UNIVERSIDAD DE CÁDIZ									
IDIOMA	INGLÉS (UGR), ESPAÑOL (UCA)									
PROFESORES										
	NOMBRE	DIRECCIÓN								
MARÍA SANTOS BRUZÓN GALLEGO		Departamento de Matemáticas. Facultad de Ciencias. Tel:956016309. matematicas.casem@uca.es								
DAVID RUIZ AGUILAR		Departamento de Análisis Matemático. Facultad de Ciencias. Universidad de Granada, 18071 Granada. <u>daruiz@ugr.es</u> Tel: 958246311								
MARÍA LUZ GANDARIAS NÚÑEZ		Departamento de Matemáticas. Facultad de Ciencias. <u>marialuz.gandarias@uca.es</u> Tel: 956016306.								
MAGDALENA RODRÍGUEZ PÉREZ		Departamento de Geometría y Topología, Facultad de Ciencias <u>magdarp@ugr.es</u> Tel: 958241000 ext 20046								
MARÍA VICTORIA VELASCO COLLAD	O (COORDINADORA DE LA ASIGNATURA)	Departamento de Análisis Matemático. Facultad de Ciencias. Universidad de Granada, 18071 Granada. vvelasco@uqr.es Tel: 958243273								
PRERREQUISITOS Y/O RECOMENDACIONES (si procede)										
Los de acceso al máster										
COMPETENCIAS GENERALES Y ESPECÍFICAS										
COMPETENCIAS GENERALES										

- CGI. Saber aplicar los conocimientos adquiridos y desarrollar la capacidad en la resolución de problemas en entornos nuevos o pocos conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con el Álgebra, el Análisis Matemático, la Geometría y Topología o la Matemática Aplicada.
- CG2. Ser capaz de integrar conocimientos y enfrentarse a la complejidad de formar juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CG3. Ser capaz de comunicar sus conclusiones (y los conocimientos y razones últimas que los sustentan) a públicos especializados y no especializados de un modo claro y sin ambiguiedades, utilizando en su caso, los medios tecnológicos y audiovisuals adecuados.
- CG4. Poseer las habilidades de aprendizaje que les permita continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CG5. Utilizar con soltura herramientas de búsqueda de recursos bibliográficos.
- CGG. Usar el inglés, como lengua relevante en el ámbito científico.
- CG7. Saber trabajar en equipo y gestionar el tiempo de trabajo.

COMPETENCIAS ESPECÍFICAS

- CEI. Saber analizar y construir demostraciones, así como transmitir conocimientos matemáticos avanzados.
- CE2. Tener capacidad para elaborar y desarrollar razonamientos matemáticos avanzados.
- CE3. Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos.
- CE4. Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y del mundo de las aplicaciones) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas o refutarlas.
- CES. Resolver problemas matemáticos avanzados, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos.
- CEG. Proponer, analizar, validar e interpretar modelos matemáticos complejos, utilizando las herramientas más adecuadas a los fines que se persigan.
- CE7. Saber elegir y utilizar aplicaciones informáticas, de cálculo numérico y simbólico, visualización gráfica, optimización u otras, para experimentar en matemáticas y resolver problemas complejos.
- CE8. Desarrollar programas informáticos que resuelvan problemas matemáticos. avanzados, utilizando para cada caso el entorno computacional adecuado.
- CE9. Conocer los problemas centrales, la relación entre ellos y las técnicas más adecuadas en los distintos campos de estudio, así como las demostraciones rigurosas

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

- Establecer las bases de la Axiomatización Matemática de la Mecánica Cuántica.
- Conocer algunos métodos del Análisis Funcional y estudiar su aplicación a las ecuaciones diferenciales.
- Saber analizar algunas ecuaciones que modelan importantes fenómenos de la Física. Estudio y análisis e interpretación de las soluciones.
- Estudio, análisis e interpretación de las soluciones.
- Uso de esta teoría en los ejemplos clásicos de física y biología.
- Tener unas nociones básicas sobre los principios del Cálculo de Variaciones y su aplicación a distintos problemas provenientes de la Física y la Geometría.

TEMARIO DE LA ASIGNATURA

TEMARIO TEÓRICO

- Tema I: Repaso de la teoría de los espacios de Hilbert y de algunos conceptos de Análisis Funcional. Introducción al formalismo de la Mecánica Cuántica.
- Tema 2: Teoría de operadores. Operadores compactos. Operadores autoadjuntos. Teorema espectral
- Tema 3: Álgebras de Banach. Teoría espectral. Teoría de representación. C*-álgebras. Álgebras no asociativas.
- Tema 4: Grupos uniparamétricos de transformaciones locales. Generador infinitesimal. Teoremas fundamentales de Lie. Invariantes y coordenadas canónicas. Grupos de simetría de ecuaciones diferenciales ordinarias y en derivadas parciales. Fórmula de prolongación. Criterio de invarianza.
- Tema 5: Ecuaciones de primer orden: cálculo de simetrías e integración por cuadratura. Ecuaciones de orden superior: cálculo de simetrías y reducción de orden. Ecuaciones en derivadas parciales: soluciones de similaridad y ecuaciones reducidas.
- Tema 6: Introducción a las Simetrías: potenciales, no clásicas y escondidas.
- Tema 7: Cálculo de variaciones y ecuaciones de Euler-Lagrange. Soluciones en sentido débil.

- Tema 8: Espacios de Lebesque y Espacios de Sobolev. El método directo del Cálculo de Variaciones.
- Tema 9: Aplicaciones: el problema de la geodésica cerrada en una superficie. El problema de la curvatura gaussiana prescrita. Introducción a las teorías min-max.

TEMARIO PRÁCTICO:

- Tema 1. Cálculo de simetrías. Aplicaciones a modelos de la física.
- Tema 2. Cálculo de soluciones de similaridad. Reducción de ecuaciones en derivadas parciales. Aplicaciones a modelos de la física.

PRÁCTICAS DE LABORATORIO:

Práctica 1. Cálculo de simetrías con el programa symmgrp2009.max. Aplicaciones a modelos de la física.

Práctica 2. Cálculo de soluciones de similaridad con el programa symmgrp2009.max. Reducción de ecuaciones en derivadas parciales. Aplicaciones a modelos de la física.

BIBLIOGRAFÍA

- AMBROSETTI A. and MALCHIODI A., Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics 104, 2007.
- ARVERSON W., A short course on Spectral Theory, Graduate Text in Mathematics 209, Springer-Verlag 2002.
- BERBERIAN S.K., Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York, 1988.
- BLUMAN, G.W. and Cole, J.D., The general similarity solution of the heat equation. J. Math. Mech., 18, 1025-1042, 1969.
- BLUMAN, G.W. and Kumei, S., Symmetries and differential equations, Berlin, Springer, 1989.
- BOURBAKI N., Théories spectrales, ch. 1 et 2, Hermann, 1967.
- BONSALL F.F., DUNCAN J., Complete normed algebras, Springer, 1973.
- BREZIS, H. Análisis Funcional, Alianza Universidad Textos, 1894.
- GALINDO A., PASCUAL P., Mecánica Cuántica, Ed. Eudema Universidad, 1989.
- GARCÍA GONZÁLEZ, P. ALVARELLOS J. E., GARCÍA SANZ J.J., Introducción al Formalismo de la Mecánica Cuántica, Universidad Nacional de Educación a Distancia, 2000.
- HYDON, P. E., Symmetry methods for Differential Equations: A beginner's quide, Cambridge University Press, 2000.
- IBRAGIMOV. N.I., A practical course in differential equations and mathematical modelling, 2004.
- KADISON R. V. and RINGROSE J. R., Fundamentals of the Theory of Operator Algebras. Volume I: Elementary Theory, vol. 15 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1997.
- KADISON R. V. AND RINGROSE J. R., Fundamentals of the Theory of Operator Algebras. Volume II: Advanced Theory, vol. 16 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1997.
- MURPHY, G. J., C*-algebras and operator theory, Academic Press, 1990.
- NEUMANN, J. Von. Fundamentos Matemáticos de la Mecánica Cuántica, C.S.I.C., Madrid, 1991.
- OKUBO, S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, 1995.
- OLVER, P. J., Applications of Lie Groups to Differential Equations, New York; Springer, 1986.
- PALMER, T. W., Banach algebras and the general theory of C*-algebras. Cambridge Univesity Press, 1994.
- SCHAFER, R.D., An introduction to non-associative algebras, Academic Press, New York, 1966.
- STEPHANI, H., Differential Equations. Cambridge; Cambridge University Press, 1989.
- STRUWE M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, 1996.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Champagne, B., Hereman, W. and Winternitz, P., The computer calculation of Lie point symmetries of large systems of differential equations, Comp. Phys. Comm., 66, 319-340, 1991.
- Clarkson, P.A., Nonclassical symmetry reductions of the Boussinesq equation, Chaos, Solutions and Fractals, 5, 2261-2301, 1995.
- Gandarias M.L. Type-II hidden symmetries through weak symmetries for nonlinear partial differential equations Journal of Mathematical Analysis and Applications 248 752-757, 2008.
- Bruzón M.S., M.L Gandarias. Applying a New Algorithm to Derive Nonclassical Symmetries. Communications in Nonlinear Science and Numerical Simulation 517-523, 2008.
- Gandarias M.L., Bruzon M.S. Nonclassical Potential System Approach for a Nonlinear Diffusion Equation Journal of Nonlinear Mathematical Physics 15 185-196. 2008.

ENLACES RECOMENDADOS

http://150.214.18.236/login/index.php http://www.maxima.sourceforge.net

METODOLOGÍA DOCENTE

La enseñanza de esta materia será presencial. Para la enseñanza de la asignatura se proponen las siguientes actividades formativas:

- Clases teóricas (20%)
- Clases prácticas y seminarios (20%)
- Tutorías (presenciales: 5%, online: 5%)
- Actividades individuales:
 - i) Estudio: 20%,
 - ii) Preparación y realización de exámenes: 12%,
 - iii) Exposiciones: 3%,
 - iv) Realización de ejercicios de autoevaluación: 15%.

Como referencia general cada ECTS se corresponderá con 25 horas de trabajo del alumno. En las sesiones teóricas y prácticas se incentivará la participación de los estudiantes en seminarios y exposiciones (los alumnos dispondrán en todo momento del material y las referencias necesarias para ello, que conseguirán a través de la plataforma virtual).

PROGRAMA DE ACTIVIDADES

3 semanas del segundo semestre	Temas del temario	Actividades presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)					Actividades no presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)				
		Sesiones teóricas (horas)	Sesiones prácticas (horas)	Exposiciones y seminarios (horas)	Tutorías colectivas (horas)	Exámenes (horas)	Trabajo en grupo (horas)	Estudio y trabajo individu al del alumno (horas)	Trabajo en grupo (horas)	Tutorías (horas)	Prepar exám.
Semanas 1-2											
Semanas 2-4											
Semanas 4-6											
Total horas											

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Los Procedimientos para la evaluación:

- a. Participación.
- b. Análisis de contenido de los trabajos individuales y grupales realizados en las clases prácticas, en los seminarios actividades de evaluación y tutorías.
- c. Otros procedimientos para evaluar la participación del estudiante en las diferentes actividades planificadas.

La calificación global responderá a la puntuación ponderada de los diferentes aspectos y actividades que integran el sistema de evaluación, por lo tanto éstas pueden variar en función de las necesidades específicas de las asignaturas que componen cada materia; de manera general se indica la siguiente ponderación:

- 1. Trabajos individuales y grupales: 40%
- 2. Prácticas y/o problemas: 30%

- 3. Actividades en seminarios : 15%
- 4. Otras actividades: 15%

INFORMACIÓN ADICIONAL

En la web del máster