Ver guía docente

Guía docente de la asignatura / materia:

Software en Matemáticas

Curso 2021/2022
Fecha última actualización: 26/07/2021
Fecha de aprobación por la Comisión Académica 28/07/2021

Máster

Máster Universitario en Matemáticas

Módulo

Módulo Iib(1). Matemáticas y Nuevas Tecnologías

Rama

Ciencias

Centro Responsable del título

Escuela Internacional de Posgrado

Semestre

Primero

Créditos

8

Tipo

Optativa

Tipo de enseñanza

Enseñanza Virtual

Profesorado

  • Jerónimo Alaminos Prats
  • Manuel Bullejos Lorenzo
  • Pedro Abelardo García Sánchez
  • Samuel Lelievre
  • Jean Louis Merrien

Horario de Tutorías

Jerónimo Alaminos Prats

alaminos@ugr.es
  • Tutorías 1º semestre
    • Lunes 16:30 a 18:30 (etsiit)
    • Martes 18:30 a 19:30 (etsiit)
    • Miercoles 10:30 a 12:00 (etsiit)
    • Miércoles 10:30 a 12:00 (etsiit)
    • Jueves 9:30 a 11:00 (etsiit)
  • Tutorías 2º semestre
    • Lunes 9:00 a 11:00
    • Martes 9:00 a 11:00
    • Miércoles 18:30 a 19:30
    • Miercoles 18:30 a 19:30
    • Jueves 16:30 a 17:30

Manuel Bullejos Lorenzo

bullejos@ugr.es
  • Primer semestre
    • Lunes 19:00 a 20:00 (fac. Ciencias - desp. 38)
    • Lunes 9:00 a 12:00 (fac. Ciencias - desp. 38)
    • Martes 19:00 a 20:00 (fac. Ciencias - desp. 38)
    • Miércoles 19:00 a 20:00 (fac. Ciencias - desp. 38)
  • Segundo semestre
    • Lunes 19:00 a 20:00 (fac. Ciencias - desp. 38)
    • Lunes 9:00 a 12:00 (fac. Ciencias - desp. 38)
    • Martes 19:00 a 20:00 (fac. Ciencias - desp. 38)
    • Miércoles 19:00 a 20:00 (fac. Ciencias - desp. 38)

Pedro Abelardo García Sánchez

pedro@ugr.es
  • Primer semestre
    • Lunes 11:30 a 13:30 (fc. Ciencias - desp.39)
    • Lunes 11:30 a 13:30 (desp. 39 - fac. Ciencias)
    • Martes 11:30 a 13:30 (fc. Ciencias - desp.39)
    • Martes 11:30 a 13:30 (desp. 39 - fac. Ciencias)
    • Miércoles 11:30 a 13:30 (fc. Ciencias - desp.39)
    • Miercoles 11:30 a 13:30 (desp. 39 - fac. Ciencias)
  • Segundo semestre
    • Jueves 8:30 a 11:30 (etsiit - desp.16)
    • Jueves 8:30 a 11:30 (desp. 16 - etsiit)
    • Viernes 12:30 a 13:30 (desp. 16 - etsiit)
    • Viernes 12:30 a 13:30 (etsiit - desp.16)
    • Viernes 8:30 a 11:30 (etsiit - desp.16)
    • Viernes 8:30 a 11:30 (desp. 16 - etsiit)

Samuel Lelievre

samuel.lelievre@u-psud.fr

Jean Louis Merrien

Jean-Louis.Merrien@insa-rennes.fr

Breve descripción de contenidos (Según memoria de verificación del Máster)

Está organizado por cada universidad entorno a los siguientes bloques:

  • Bloque I. Programación básica y librerías científicas (en Python / FreeFem / GAP...)
  • Bloque II. Software Científico (SageMath / Maxima / Octave / Mathematica / Wolfram Alpha / CoCoA System...)

En la Universidad de Almería

  • Bloque I. Programación básica y librerías científicas en Mathematica y Python.
  • Bloque II. Software Científico (Mathematica y Python).

Prerrequisitos y/o Recomendaciones

Competencias

Competencias Básicas

  • CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
  • CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Generales

  • CG01. Utilizar con soltura herramientas de búsqueda de recursos bibliográficos. 
  • CG02. Usar el inglés, como lengua relevante en el ámbito científico. 
  • CG03. Saber trabajar en equipo y gestionar el tiempo de trabajo. 

Competencias Específicas

  • CE04. Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y del mundo de las aplicaciones) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas o refutarlas. 
  • CE07. Saber elegir y utilizar aplicaciones informáticas, de cálculo numérico y simbólico, visualización gráfica, optimización u otras, para experimentar en matemáticas y resolver problemas complejos. 
  • CE08. Desarrollar programas informáticos que resuelvan problemas matemáticos avanzados, utilizando para cada caso el entorno computacional adecuado. 

Resultados de aprendizaje (Objetivos)

  • Conocimientos de programación básica.
  • El alumno será capaz de resolver mediante el uso de software científico modelos matemáticos.

Programa de contenidos Teóricos y Prácticos

Teórico

Universidad de Almería

  • 18 sesiones de paquetes de cálculo simbólico, numérico y programación matemática
  • 3 sesiones de programación en GAP
  • 3 sesiones de cálculo simbólico con GAP

Universidad de Cádiz

  • 1 sesión de introducción a la "shell" Unix y ejecución de "scripts"
  • 4 sesiones de Python: programación básica e introducción a la programación orientada a objetos
  • 4 sesiones de cálculo numérico con numpy y cálculo simbólico con sympy (diofant) y SageMath
  • 9 sesiones de Maxima
  • 3 sesiones de Mathematica
  • 3 sesiones de Octave

Universidad de Granada

  • 3 sesiones de programación en Python
  • 2 sesiones de sympy (diofant)
  • 2 sesiones de  numpy 
  • 2 sesiones de Neo4j
  • 3 sesiones de SageMath
  • 3 sesiones de Maxima / Wolfram Alpha
  • 6 sesiones de GAP
  • 3 sesiones de Octave

Universidad de Jaén

  • 1 sesión de presentación, instalación de herramientas e introducción a Python
  • 4 sesiones de programación en Python
  • 4 sesiones de sympy (diofant), numpy y otras librerías científicas en Python
  • 4 sesiones de SageMath, Maxima
  • 2 sesiones para otros entornos matemáticos de distribución libre
  • 4 sesiones de Software Simbólico / Wolfram Alpha
  • 2 sesión para otros entornos matemáticos comerciales
  • 1 sesiones para app’s de móviles
  • 2 sesiones para otras herramientas on-line en docencia e investigación

Universidad de Málaga

  • 6 sesiones de programación con Python
  • 6 sesiones de FreeFem
  • 6 sesiones de cálculo simbólico con SageMath
  • 3 sesiones de cálculo simbólico con CoCoA System
  • 3 sesiones de programación con GAP.

Práctico

El temario práctico coincide con el teórico.

Bibliografía

Bibliografía fundamental

Enlaces recomendados

  • https://www.sagemath.org
  • https://cocoa.dima.unige.it
  • https://www.gnu.org/software/octave/
  • https://www.gap-system.org
  • https://www.python.org
  • https://www.wolframalpha.com

Metodología docente

  • MD01 Lección magistral/expositiva 
  • MD02 Sesiones de discusión y debate 
  • MD03 Resolución de problemas y estudio de casos prácticos 
  • MD05 Seminarios 
  • MD06 Ejercicios de simulación 
  • MD07 Análisis de fuentes y documentos 
  • MD08 Realización de trabajos en grupo 
  • MD09 Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)

Evaluación Ordinaria

El sistema de evaluación será único, de forma que todos los alumnos deberán seguir el mismo sistema.

Los procedimientos para la evaluación son pruebas orales o escritas y/o análisis de contenido de las tareas enviadas, trabajos (individuales y grupales) realizados, actividades de autoevaluación y participación en las sesiones de acuerdo con la siguiente valoración: 

  • Pruebas y/o análisis de las tareas y trabajos: un 80% distribuido a partes iguales entre todos los profesores.
  • Otras actividades y participación (en la participación se incluye la asistencia): 20%.

Evaluación Extraordinaria

Tal y como establece la normativa al respecto, los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de evaluación continua. La calificación de los estudiantes en la convocatoria extraordinaria se ajustará a las reglas establecidas en la Guía Docente de la asignatura. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de obtener el 100% de la calificación mediante la realización de un examen de las mismas características que el recogido en el caso de estudiantes de Evaluación Única Final.

Evaluación única final

Atendiendo a la normativa vigente sobre evaluación y calificación de los estudiantes en cada universidad, el estudiante que no pueda cumplir con el método de evaluación continua por motivos laborales, estado de salud, discapacidad o cualquier otra causa debidamente justificada que les impida seguir el régimen de evaluación continua, podrá acogerse a una evaluación única final. Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura, lo solicitará a la Coordinación del Máster, quien dará traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua. Por ello en las convocatorias oficiales se desarrollará un examen que se dividirá en los siguientes apartados:

  • Prueba evaluativa escrita, del mismo temario teórico que el resto de sus compañeros.
  • Prueba evaluativa escrita del temario práctico, con prácticas similares a las realizadas por sus compañeros.

Información adicional

Aunque se hará uso de la teledocencia para todas las actividades programadas en el aula, salvo situaciones justificadas, los estudiantes deben seguir de forma presencial las sesiones que tengan lugar en su universidad.

Escenario A (Enseñanza-Aprendizaje presencial y tele-presencial)

Horario (Según lo establecido en el POD)

Los horarios de puede consultar en https://masteres.ugr.es/doctomat/pages/info_academica/profesorado

Herramientas para la atención tutorial (Indicar medios telemáticos para la atención tutorial)

Correo electrónico, mensajería instantánea, foros en la plataforma de docencia, videoconferencia (depende de la sede: zoom, Adobe Connect, Google meet u otras plataformas disponibles).

Medidas de adaptación de la metodología docente

Dependiendo del número de alumnos matriculados en la asignatura y de la capacidad del aula, las clases se podrán dar de forma presencial. Los alumnos que así lo necesiten podrán asistir utilizando las salas de videoconferencia asociadas al máster.

Si el número de alumnos es muy elevado y es imposible la reserva de un aula más grande, las clases se impartirán de forma virtual o el grupo se dividirá en tantos subgrupos como fuese necesario. Las sesiones de las clases presenciales se alternarán entre los subgrupos creados. En cada sesión, los subgrupos que no tengan clase presencial, asistirán de forma remota y síncrona a través de las salas de videoconferencia habilitadas en el máster.

Evaluación Ordinaria

La evaluación es continua. Los trabajos se entregan en las plataformas docentes correspondientes. Las defensas se pueden hacer por videoconferencia.

La revisión se realizará a través de correo electrónico, teléfono o videoconferencia a petición del alumnado.

Evaluación Extraordinaria

Si no fuese posible la evaluación presencial, se hará remotamente utilizando un sistema de videoconferencia.

Las calificaciones se notificarán a través de las actas preliminares o mediante la plataforma de docencia. La revisión se realizará a través de correo electrónico, teléfono o vídeo conferencia a petición del alumnado.

Evaluación única final

Si no fuese posible la evaluación presencial, se hará remotamente utilizando un sistema de videoconferencia.

Las calificaciones se notificarán a través de las actas preliminares o mediante la plataforma de docencia. La revisión se realizará a través de correo electrónico, teléfono o vídeo conferencia a petición del alumnado.

La solicitud de esta modalidad dependerá de la sede en la que esté matriculado el alumno.

Escenario B (Suspensión de la actividad presencial)

Horario (Según lo establecido en el POD)

Los horarios de puede consultar en https://masteres.ugr.es/doctomat/pages/info_academica/profesorado

Herramientas para la atención tutorial (Indicar medios telemáticos para la atención tutorial)

Correo electrónico, mensajería instantánea, foros en la plataforma de docencia, videoconferencia (depende de la sede: zoom, Adobe Connect, Google meet  u otras plataformas disponibles).

Medidas de adaptación de la metodología docente

Las clases se impartirán en las mismas salas de videoconferencia que utilizan cada una de las sedes para los alumnos que no pertenecen a esa sede.

Evaluación Ordinaria

La evaluación es continua. Los trabajos se entregan en las plataformas docentes correspondientes. Las defensas se pueden hacer por videoconferencia.

Las calificaciones se notificarán a través de las actas preliminares o mediante la plataforma de docencia. La revisión se realizará a través de correo electrónico, teléfono o vídeoconferencia a petición del alumnado.

Evaluación Extraordinaria

Si no fuese posible la evaluación presencial, se hará remotamente utilizando un sistema de videoconferencia.

Las calificaciones se notificarán a través de las actas preliminares o mediante la plataforma de docencia. La revisión se realizará a través de correo electrónico, teléfono o vídeo conferencia a petición del alumnado.

Evaluación única final

Si no fuese posible la evaluación presencial, se hará remotamente utilizando un sistema de videoconferencia.

La revisión se realizará a través de correo electrónico, teléfono o vídeo conferencia a petición del alumnado.

La solicitud de esta modalidad dependerá de la sede en la que esté matriculado el alumno.