Guía docente de Técnicas Estadísticas Multivariantes y Aplicaciones (M42/56/1/48)

Curso 2022/2023
Fecha de aprobación por la Comisión Académica 13/07/2022

Máster

Máster Universitario en Estadística Aplicada

Módulo

Módulo I: Aplicaciones de la Estadística

Rama

Ciencias

Centro Responsable del título

Escuela Internacional de Posgrado

Semestre

Primero

Créditos

4

Tipo

Optativa

Tipo de enseñanza

Enseñanza Virtual

Profesorado

  • Ramón Gutiérrez Sánchez
  • Nuria Rico Castro
  • Desiré Romero Molina
  • María Del Carmen Segovia García

Horario de Tutorías

Ramón Gutiérrez Sánchez

Email
Anual
  • Martes 10:00 a 13:00 (Despacho 9)
  • Jueves 10:00 a 13:00 (Despacho 9)

Nuria Rico Castro

Email
  • Primer semestre
    • Lunes 11:00 a 13:00 (Despacho 22 F. Ciencias)
    • Lunes 9:00 a 10:00 (Despacho 22 F. Ciencias)
    • Martes 9:00 a 12:00 (Despacho 22 F. Ciencias)
  • Segundo semestre
    • Martes 8:30 a 12:30 (Despacho 16, 3ª P. Inform)
    • Viernes 8:30 a 10:30 (Despacho 16, 3ª P. Inform)

Desiré Romero Molina

Email
Anual
  • Martes 12:00 a 14:00 (Despacho 26)
  • Martes 9:00 a 10:00 (Despacho 26)
  • Miércoles 12:00 a 14:00 (Despacho 26)
  • Miércoles 9:00 a 10:00 (Despacho 26)

María Del Carmen Segovia García

Email
Primer semestre
  • Lunes 10:30 a 13:30 (Despacho 11 Fac Ciencias)
  • Martes 10:30 a 13:30 (Despacho 11 Fac Ciencias)

Breve descripción de contenidos (Según memoria de verificación del Máster)

En la asignatura de Técnicas Estadísticas Multivariantes y Aplicaciones se pretende que el alumno conozca y sea capaz de aplicar en situaciones reales los conceptos básicos de la Inferencia en poblaciones normales multivariantes y las técnicas estadísticas multivariantes paramétricas más comunes así como su aplicación mediante software estadístico.
 

Prerrequisitos y/o Recomendaciones

El alumno deberá tener conceptos básicos de inferencia estadística. Se recomienda cursar la asignatura de Entornos de Computación Estadística.

Competencias

Competencias Básicas

  • CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
  • CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Generales

  • CG01. Los titulados han de saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. 
  • CG02. Los titulados han de ser capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios. 
  • CG03. Los titulados han de saber comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades 
  • CG04. Los titulados deben poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo. 
  • CG05. Los titulados han de demostrar una comprensión sistemática del campo de estudio y el dominio de las habilidades y métodos de investigación relacionados con dicho campo. 
  • CG06. Los titulados deben demostrar la capacidad de concebir, diseñar, poner en práctica y adoptar un proceso sustancial de investigación con seriedad académica. 
  • CG07. Los titulados han de realizar una contribución a través de una investigación original que amplíe las fronteras del conocimiento desarrollando un corpus sustancial, del que parte merezca la publicación referenciada a nivel nacional o internacional. 
  • CG08. Los titulados deben ser críticos en el análisis, evaluación y síntesis de ideas nuevas y complejas. 
  • CG09. Los titulados deben saber comunicarse con sus colegas, con la comunidad académica en su conjunto y con la sociedad en general acerca de sus áreas de conocimiento. 
  • CG10. Los titulados han de ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento. 

Competencias Específicas

  • CE01. Conocer métodos para el Análisis de Datos 
  • CE02. Conocer diferentes técnicas de Muestreo 
  • CE03. Adquirir conocimientos avanzados en Probabilidad y Procesos Estocásticos 
  • CE04. Profundizar en las técnicas de Modelización Estocástica 
  • CE05. Adquirir conocimientos avanzados en Inferencia Estadística 
  • CE06. Aprender y entender técnicas de Estadística Multivariante 
  • CE07. Saber identificar y aplicar diferentes Modelos Econométricos 
  • CE09. Adquirir conocimientos en Bioestadística 
  • CE10. Dominar el uso de diferentes entornos de Computación Estadística 
  • CE11. Conocer y aplicar técnicas de Control Estadístico de Calidad 
  • CE12. Ser capaz de resolver problemas a través de técnicas de Simulación Estocástica 
  • CE13. Saber llevar a cabo el diseño, programación e implantación programas de computación estadística 
  • CE14. Saber realizar un diseño de experimentos 
  • CE15. Ser capaza de identificar la información relevante para resolver un problema 
  • CE16. Utilizar correcta y racionalmente programas de ordenador de tipo estadístico 
  • CE17. Adquirir capacidades de elaboración y construcción de modelos y su validación 
  • CE18. Ser capaz de realizar un análisis de datos 
  • CE19. Saber gestionar bases de datos 
  • CE20. Ser capaz de realizar una correcta representación gráfica de datos 
  • CE21. Conocer, identificar y seleccionar fuentes estadísticas 

Competencias Transversales

  • CT01. Mostrar interés por la calidad y la excelencia en la realización de diferentes tareas 
  • CT02. Comprender y defender la importancia que la diversidad de culturas y costumbres tienen en la investigación o práctica profesional 
  • CT03. Tener un compromiso ético y social en la aplicación de los conocimientos adquiridos 
  • CT04. Ser capaz de trabajar en equipos interdisciplinarios para alcanzar objetivos comunes desde campos expertos diferenciados. 
  • CT05. Incorporar los principios del Diseño Universal en el desempeño de su profesión 

Resultados de aprendizaje (Objetivos)

El alumno sabrá/comprenderá:

  • Los conceptos básicos y resultados de la Inferencia Estadística en poblaciones normales multivariantes (cadena de resultados que conducen desde una normal multivariante, hasta los contrastes de hipótesis más importantes en el caso normal), dando preferencia a su comprensión y objetivos que resuelven dichos resultados sobre las demostraciones estadístico-matemáticas de los mismos.
  • Los fundamentos teóricos imprescindibles (modelos; objetivos prácticos que resuelven; hipótesis estadístico-matemáticas; versiones teóricos y muestrales, etc.) de las más importantes técnicas estadísticas multivariantes (Análisis de Componentes Principales, Análisis Factorial, Análisis Discriminante, Análisis Clúster; Análisis de Correspondencias, Análisis de Correlación Canónica, MANOVA).
  • Aplicar, con apoyo de software estadístico las mencionadas técnicas.

El alumno será capaz:

  • Resolver casos reales, con p-variables y observaciones muestrales dadas, detectando la/s técnica/s multivariante/s más adecuada/s; comprobando el grado de verificación de las hipótesis estadísticas requeridas por cada técnica; y efectuar discusión de los resultados obtenidos planteando todo en un Informe Estadístico final.

Programa de contenidos Teóricos y Prácticos

Teórico

  • Introducción al análisis de datos multivariantes.
  • Análisis de Componentes Principales
  • Análisis Factorial.
  • MANOVA.
  • Análisis de Correlación Canónica.
  • Análisis de Correspondencias.
  • Análisis Clúster.
  • Análisis Discriminante.


 

Práctico

Aplicación mediante R de los temas teóricos.

Bibliografía

Bibliografía fundamental

  • Anderson, TW. (1984). An Introduction to Multivariate Statistical Analysis, second Edition, Wiley & Sons.
  • Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods. Theory and Applications, Wiley & Sons.
  • Cuadras, C.M. Nuevos Métodos del Análisis Multivariante; CMC, 2018.
  • Muirhead, R. J. (1982) Aspects of Multivariate Statistical Theory. Wiley, N. York.
  • Rencher, A. C. (1995) Methods of Multivariate Analysis. Wiley, N. York.

Bibliografía complementaria

  • Bridges CC. Hierarchical Cluster Analysis; Psychological Reports; 18(3):851-854, 1966.
  • Carrasco, J.L.; Hernán, M.A. Estadística multivariante en las ciencias de la vida. Fundamentos, métodos y aplicación; Ciencia 3, D.L., 1993.
  • Cooley, W.W. and Lohnes, P. R. (1971) Multivariate Data Analysis. Wiley, N. York.
  • Cuadras, C. M. and M. Sánchez-Turet (1975) Aplicaciones del análisis multivariante canónico en la investigación psicológica. Rev. Psicol. Gen. Aplic., 30, 371-382.
  • Kassambara, A. Practical guide to cluster analysis in R: Unsupervised machine learning (Vol 1). Sthda, 2017.
  • Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179–188.
  • Gittings, R. (1985) Canonical Analysis. A Review with Applications in Ecology. SpringerVerlag, Berlin.
  • Gnanadeskian, R. Methods for statistical data analysis of multivariate observations; (Vol 321) John Wiley & Sons, 2011.
  • González, I., Déjean, S., Martin, P. G. P. y Baccini, A. (2008) CCA: An R Package to Extend Canonical Correlation Analysis. J ournal of Statistical Softward, 23, 12.
  • Gutiérrez, R and González, A. (1991). Estadística Multivariante. Introducción al Análisis Multivariante. Volumen 1.
  • Hair, JF., Anderson, E. Tatham, L. and Black, C. (1999). Análisis Multivariante. 5ª Edición. Prentice-Hall. 1999.
  • Hamerly, G., Elkan, C. Learning the k in k-means; Advances in neural information processing systems, 16:281-288, 2004.
  • Hotelling, H. (1936) Relations between two sets of variates. Biometrika, 28(3/4), 321-377.
  • Johnson, RA. and Wichern, DW. (1988) Applied Multivariate Statistic Analysis, Second Edition, Prentice-Hall.
  • Menzel, U. (2015) Significance Tests for Canonical Correlation Analysis (CCA). https://cran.r-project.org/web/packages/CCP/CCP.pdf
  • Rencher, A.C. Methods of Multivariate Analysis; Wiley, N. York, 1995. [8] Cluster Analysis in R, R-Bloggers https://www.r-bloggers.com/2021/04/ cluster-analysis-in-r/
  • Sharma, S (1996) Applied Multivariate Techniques, Wiley & Sons.

Enlaces recomendados

  • PRADO (https://prado.ugr.es/)
  • R-project (https://www.r-project.org/)

Metodología docente

  • MD01 Lección magistral/expositiva 
  • MD02 Sesiones de discusión y debate 
  • MD03 Resolución de problemas y estudio de casos prácticos 
  • MD04 Prácticas de laboratorio o clínicas 
  • MD05 Seminarios 
  • MD06 Ejercicios de simulación 
  • MD07 Análisis de fuentes y documentos 
  • MD08 Realización de trabajos en grupo 
  • MD09 Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)

Evaluación Ordinaria

El artículo 17 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que la convocatoria ordinaria estará basada preferentemente en la evaluación continua del estudiante, excepto para quienes se les haya reconocido el derecho a la evaluación única final.

Para cada tema el alumno deberá de entregar:

  1. Un resumen-esquema del contenido teórico: en base al material y bibliografía proporcionados, se deberá entregar, por cada tema, un resumen que englobe lo fundamental de cada técnica de manera que se sinteticen los fundamentos teóricos del modelo y los objetivos prácticos que se resuelven.

  2. Un ejercicio práctico: el alumno deberá entregar, por cada tema, la resolución de un problema de tipo práctico mediante el software R, donde se evidenciará la compresión de la metodología práctica, incluyendo un informe sobre la resolución del ejercicio que contendrá una discusión completa de los resultados obtenidos, que justifique la oportunidad del análisis y sus consecuencias y donde se realice una interpretación de los resultados obtenidos.

La puntuación de cada tema será media ponderada por un 30% del resumen-esquema y un 70% la resolución de tipo práctico y la discusión de los resultados.

La calificación final de la asignatura será la media aritmética de todas las actividades.

 

Periodo de entrega de actividades pendientes: 

Los alumnos que no hayan entregado alguna actividad en el periodo establecido para ello, podrán presentar las actividades en el nuevo periodo de calificación ordinario. Esta calificación será multiplicada por 0,8.

Todas las actividades deberán pasar por la plataforma Turnitin al ser entregadas en PRADO por parte del alumno, tomando el profesorado las acciones consecuentes en caso de plagio.  


 

Evaluación Extraordinaria

El artículo 19 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de evaluación continua. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de obtener el 100% de la calificación mediante la realización de una prueba y/o trabajo

El alumno deberá entregar, en las fechas establecidas, las actividades siguiendo el mismo sistema que en la calificación ordinaria para cada tema. 

Evaluación única final

El artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que podrán acogerse a la evaluación única final, el estudiante que no pueda cumplir con el método de evaluación continua por causas justificadas. Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura o en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de las clases, lo solicitará, a través del procedimiento electrónico, a la Coordinación del Máster, quien dará traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua.

El alumno deberá entregar, en las fechas establecidas, las actividades siguiendo el mismo sistema que en la calificación ordinaria para cada tema.

Información adicional