Guía docente de Diseño Estadístico Experimental y Control de Calidad. Aplicaciones en Biociencias e Ingeniería (M42/56/1/38)

Curso 2022/2023
Fecha de aprobación por la Comisión Académica 13/07/2022

Máster

Máster Universitario en Estadística Aplicada

Módulo

Módulo I: Aplicaciones de la Estadística

Rama

Ciencias

Centro Responsable del título

Escuela Internacional de Posgrado

Semestre

Segundo

Créditos

4

Tipo

Optativa

Tipo de enseñanza

Enseñanza Virtual

Profesorado

  • Francisco Javier Esquivel Sánchez
  • Silvia González Aguilera

Horario de Tutorías

Francisco Javier Esquivel Sánchez

Email
  • Primer semestre
    • Martes 11:00 a 13:00 (Despacho 25)
    • Miércoles 11:00 a 13:00 (Despacho 25)
    • Jueves 11:00 a 13:00 (Despacho 25)
  • Segundo semestre
    • Lunes 12:00 a 14:00 (Despacho 25)
    • Martes 9:00 a 12:00 (Despacho 25)
    • Miércoles 11:00 a 12:00 (Despacho 25)

Silvia González Aguilera

Email
  • Primer semestre
    • Martes 9:00 a 12:00 (Despacho 25)
    • Miércoles 9:00 a 12:00 (Despacho 25)
  • Segundo semestre
    • Lunes 13:00 a 14:30 (Despacho 25)
    • Martes 12:00 a 14:00 (Despacho 25)
    • Miércoles 12:00 a 14:30 (Despacho 25)

Breve descripción de contenidos (Según memoria de verificación del Máster)

El diseño de experimentos surge en todos los campos aplicados, dada la necesidad de extraer información sobre un proceso o sistema a partir de la realización de una serie de pruebas o ensayos (experimentos virtuales). En este curso nos centraremos en su aplicación en el contexto de las Biociencias. El objetivo fundamental en la realización de pruebas o ensayos es identificar y contrastar cuáles son las variables controlables o factores fundamentales y de qué forma actúan sobre la variable de interés, objeto de estudio, que define la respuesta del sistema. Asimismo, interesa actuar sobre dichas variables para reducir la variabilidad del sistema, minimizando los efectos de las variables no controlables. Es decir, desde el punto de vista estadístico, el objetivo primordial del diseño es generar un proceso consistente y robusto. Para alcanzar los objetivos señalados, en este curso, se comenzará con una breve introducción sobre los elementos fundamentales que intervienen en análisis estadístico de experimentos en el caso más sencillo de diseños unifactoriales: descomposición de la variabilidad, estimación de los parámetros, contrastes de comparación y ajuste, diagnosis y validación del modelo, así como  transformaciones de los datos. Se continuará con la extensión de las herramientas estadísticas estudiadas a configuraciones o modelos más complejos tales como los que subyacen al diseño por bloques aleatorizados completos e incompletos, cuadrados latinos y grecolatinos, diseños factoriales y extensiones

Prerrequisitos y/o Recomendaciones

Se recomienda poseer conocimientos previos de Estadística a nivel medio

Competencias

Competencias Básicas

  • CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
  • CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Generales

  • CG01. Los titulados han de saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. 
  • CG02. Los titulados han de ser capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios. 
  • CG03. Los titulados han de saber comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades 
  • CG04. Los titulados deben poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo. 
  • CG05. Los titulados han de demostrar una comprensión sistemática del campo de estudio y el dominio de las habilidades y métodos de investigación relacionados con dicho campo. 
  • CG06. Los titulados deben demostrar la capacidad de concebir, diseñar, poner en práctica y adoptar un proceso sustancial de investigación con seriedad académica. 
  • CG07. Los titulados han de realizar una contribución a través de una investigación original que amplíe las fronteras del conocimiento desarrollando un corpus sustancial, del que parte merezca la publicación referenciada a nivel nacional o internacional. 
  • CG08. Los titulados deben ser críticos en el análisis, evaluación y síntesis de ideas nuevas y complejas. 
  • CG09. Los titulados deben saber comunicarse con sus colegas, con la comunidad académica en su conjunto y con la sociedad en general acerca de sus áreas de conocimiento. 
  • CG10. Los titulados han de ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento. 

Competencias Específicas

  • CE01. Conocer métodos para el Análisis de Datos 
  • CE02. Conocer diferentes técnicas de Muestreo 
  • CE03. Adquirir conocimientos avanzados en Probabilidad y Procesos Estocásticos 
  • CE04. Profundizar en las técnicas de Modelización Estocástica 
  • CE05. Adquirir conocimientos avanzados en Inferencia Estadística 
  • CE06. Aprender y entender técnicas de Estadística Multivariante 
  • CE07. Saber identificar y aplicar diferentes Modelos Econométricos 
  • CE09. Adquirir conocimientos en Bioestadística 
  • CE10. Dominar el uso de diferentes entornos de Computación Estadística 
  • CE11. Conocer y aplicar técnicas de Control Estadístico de Calidad 
  • CE12. Ser capaz de resolver problemas a través de técnicas de Simulación Estocástica 
  • CE13. Saber llevar a cabo el diseño, programación e implantación programas de computación estadística 
  • CE14. Saber realizar un diseño de experimentos 
  • CE15. Ser capaza de identificar la información relevante para resolver un problema 
  • CE16. Utilizar correcta y racionalmente programas de ordenador de tipo estadístico 
  • CE17. Adquirir capacidades de elaboración y construcción de modelos y su validación 
  • CE18. Ser capaz de realizar un análisis de datos 
  • CE19. Saber gestionar bases de datos 
  • CE20. Ser capaz de realizar una correcta representación gráfica de datos 
  • CE21. Conocer, identificar y seleccionar fuentes estadísticas 

Competencias Transversales

  • CT01. Mostrar interés por la calidad y la excelencia en la realización de diferentes tareas 
  • CT02. Comprender y defender la importancia que la diversidad de culturas y costumbres tienen en la investigación o práctica profesional 
  • CT03. Tener un compromiso ético y social en la aplicación de los conocimientos adquiridos 
  • CT04. Ser capaz de trabajar en equipos interdisciplinarios para alcanzar objetivos comunes desde campos expertos diferenciados. 
  • CT05. Incorporar los principios del Diseño Universal en el desempeño de su profesión 

Resultados de aprendizaje (Objetivos)

· Adquirir los conceptos básicos del análisis de la varianza de una vía.

· Adquirir los elementos básicos que intervienen en el análisis estadístico del modelo de

regresión lineal simple y múltiple.

· Adquirir las herramientas básicas que intervienen el análisis estadístico (estimación de

los parámetros, descomposición de la variabilidad, tabla ANOVA, contrastes) de los

diseños por bloques aleatorizados completos e incompletos.

· Conocer la estructura que define el diseño en cuadrado latino y grecolatino, diseños

factoriales, jerárquicos y multifactoriales, así como los elementos que intervienen en el

desarrollo del análisis estadístico de los modelos asociados.

· Aplicar los elementos

Programa de contenidos Teóricos y Prácticos

Teórico

1. Principios y directrices del diseño de experimentos.

2. Análisis de la varianza de una sóla via.

3. Regresión lineal simple.

4. Regresión lineal múltiple.

5. Diseños aleatorizados por bloques completos e incompletos.

 

Práctico

1. Análisis de la varianza de una sóla via.

2. Regresión lineal simple.

3. Regresión lineal múltiple.

4. Diseños aleatorizados por bloques completos e incompletos.

 

Bibliografía

Bibliografía fundamental

1. Brenton, R. C. (2008). Linear models: the theory and applications of analysis of

variance. ISBN: 978-0-470-0566-6.

2. Arnold, E. y Davis, Ch. S. (2002). Statistical methods for the analysis of repeated

measurements. Springer.

3. Dobson, A.J. y Barnett, A.G. (2008). An introduction to generalized linear models.

Series: Chapman & Hall/CRC texts in Statistical Science.

4. Fisher, R.A. (2003). Statistical methods, experimental design, and scientific

inference. ISBN: 978-0-19-852229-4.

5. Gutiérrez P.H. (2003). Análisis y diseño de experimentos. McGraw-Hill.

6. Hocking, R. R. (2003). Methods and applications of linear models: regression and

the analysis of variance. Wiley Series in Probability and Statistics. ISBN: 978-0-471-

23222-3.

7. Kish, L. (2004). Statistical design for research. Wiley Interscience.

8. Lindman, H. R. (1992). Analysis of variance in experimental design. Springer-Verlag.

9. Kuehl, R. O. (2001). Diseño de experimentos. Principios estadísticos del diseño y

análisis de investigación. Thomson Learning.

10. Peña, D. (2002). Regresión y diseño de experimentos. Alianza.

11. Montgomery, D. C. (2002). Diseño y análisis de experimentos. Limusa-Wiley.

12. Scheiner, S.M. (2001). Design and analysis of ecological experiments. Oxford

University Press.

13. Toutenburg, H. (2002). Statistical analysis of designed experiments. Springer.

Enlaces recomendados

 

Metodología docente

  • MD01 Lección magistral/expositiva 
  • MD02 Sesiones de discusión y debate 
  • MD03 Resolución de problemas y estudio de casos prácticos 
  • MD04 Prácticas de laboratorio o clínicas 
  • MD05 Seminarios 
  • MD06 Ejercicios de simulación 
  • MD07 Análisis de fuentes y documentos 
  • MD08 Realización de trabajos en grupo 
  • MD09 Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)

Evaluación Ordinaria

Se realizará una prueba de evaluación de cada tema  vía la plataforma moodle.

Evaluación Extraordinaria

Se realizará una prueba de evaluación vía la plataforma moodle.

Evaluación única final

Se realizará una prueba de evaluación vía la plataforma moodle.

Información adicional