GUIDE OF THE COURSE

RADIATIVE PROCESSES IN ATOMS AND NUCLEI

(updated: 03/06/2019) Academic year: 2019-20

MODULE	TOPIC	SUBJECT	COURSE	SEMESTER	ECTS	CHARACTER
Radiation Physics and technology	Radiation physics: new developments and applications	Radiative processes in atoms and nuclei	1	1	6	Optional/Compu lsory
LECTURERS			CONTACT			
José Enrique Amaro Soriano Enrique Buendía Ávila Francisco Javier Gálvez Cifuentes			Dep. Física atómica, molecular y nuclear. Facultad de Ciencias. J.E. Amaro, 958240028, amaro@ugr.es E. Buendía, 958242393, buendia@ugr.es F.J. Gálvez, 958243312, galvez@ugr.es			
			TUTORING SCHEDULE			
			Amaro: M,W,F, 12:0014:00 Buendia: M,T,W, 1011 and 1213 Gálvez: M,T, 912			
MASTER						
Master in physics: radiation, nanotechnology, particles and astrophysics						
REQUISITES AND/OR RECOMMENDATIONS						
BRIEF DESCRIPTION OF CONTENTS						
Atomic and molecular structure Interaction processes with electromagnetic fields. Gamma and beta decay.						
OBJETIVES						
The student will know/understand:						
The theories on the atomic and nuclear structure beyond the independent particle picture. The quantum theory of electromagnetic field interaction with atoms and nuclei. The Fermi theory of weak interaction.						

The student will be able to:

To determine the multipoles contributing to the atomic and nuclear transitions. To evaluate the Fermi and Gamow-Teller transitions in beta decay.

CONTENTS OF THE COURSE

- 1. Atomic structure: Independent particle models. Making states with angular momentum. Hartree-Fock equations. Optimized effective potential. Multiconfiguration approximation. Dynamic correlations. Electromagnetic field interaction with atoms. Transition probabilities between atomic states. Photoionization.

- 2. Nuclear structure: State vectors in independent particle models. LS- and jj-couplings and isospin quantum numbers. Models based on generating functions and angular momentum projection. Dynamic correlations. Monte Carlo calculation of expectation values.

- **3**. Nuclear radiation: Quantum theory of the interaction of charged and magnetic particles with the radiation. Gamma radiation. Electromagnetic multipoles. Beta radiation. Fermi theory of weak interaction. Fermi and Gamow-Teller transitions. Neutrinos.

- **4. Some applications:** Electromagnetic transitions: calculation of transition probabilities between bound states in atoms and nuclei. Cross sections for one-electron and one-nucleon knock-out. Alpha decay: calculation of meanlifes as a function of the energy and nuclear effects.

REFERENCES

P. J. Brussaard y P.W.M. Glaudemans, Sell model applications in nuclear spectroscopy, Norh Holland, 1977 E.U. Condon y H. Odabasi, Atomic Stucture, Cambidge Univ. Press, 1980

K.N. Mukhin, Experimental Nuclear Physics, Mir 1987

Emilio Segré, Núcleos y partículas, Reverté 1972

J.M. Eisenberg, W. Greiner, Nuclear Theory 2 Excitation Mechanisms of the Nucleus, North-Holland 1970 R.J. Blin-Stoyle. Fundamental interactions and the nucleus, North-Holland/American Elsevier, 1973 K. Grotz, H.V. Klapdor, The weak interaction in nuclear, particle and astrophysics, Adam Hilger 1990 F. Mandl, G. Shaw, Quantum Field Theory, John Wiley & Sons, 1984

K. Langanke, J.A. Maruhn, S.E. Kooning, Computational Nuclear Physics. (Springer-Verlag, 1991).

J.D. Walecka, Theoretical nuclear and subnuclear physics. (Oxford University Press, 1995)

USEFUL LINKS

http://www.arxiv.org/ http://www.aip.org/

METHODOLOGY

Lectures: To transmit the contents of the subject, motivating the students to reflection, facilitating the discovery of relationships between different concepts and promoting a critical mindset.

Seminars: To develop in the students the cognitive and procedural skills of the subject.

Academic tutoring: To guide the autonomous and team work of students, focusing on different aspects of the subjects and guide the comprehensive academic training of the student.

Study and independent work of students: To foster in the student the ability to self-regulate their learning, by planning, designing, evaluating and adapting it to their particular conditions and interests.

Teamwork: To encourage students in the generation and exchange of ideas, identification and analysis of different views on a topic, generalization or transfer of knowledge and critical assessment of it.

EVALUATION SYSTEM

1. Final exams: Evaluation of the results of a work proposed by the teacher (50%)

2. Problems and exercices. Written and oral presentation of the solution of the physical problems proposed by the teacher

ADITIONAL INFORMATION

