GUIDE OF THE COURSE

APPLICATIONS OF RADIATION IN MEDICINE AND INDUSTRY

(updated: 05/31/19) Academic year: 2019-20

MODULE	TOPIC	SUBJECT	COURSE	SEMESTER	ECTS	CHARACTER
Physics and Technology of Radiations	Medical Physics	Applications of Radiation in Medicine and Industry	1	2nd	6 ECTS	Optional
LECTURERS			CONTACT			
Marta Anguiano Millán Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada. 958240029			mangui@ugr.es Telephone: +34958240029			
Manuel Vilches Pacheco Instituto de Medicina Oncológica y Molecular de Asturas manuelvilchessspa@gmail.com			TUTORING SCHEDULE			
			Tuesday, Wednesday and Thursday: 16:00-18:00			
MASTER						
Máster Universitario en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica						
REQUISITES AND/	OR RECOMMENDATI	ONS	- I			
To follow or to l	have followed the	courses "Radiation-Ma	tter interaction"	and "Detection of	of Radiation and	d Dosimetry".

BRIEF DESCRIPTION OF CONTENTS

Applications in Radiology, Radiotherapy and Nuclear Medicine. Applications in control and optimization of industrial problems. Non destructive testing. Materials treatment.

OBJETIVES

The student will know/understand:

- The applications of ionizing radiations in Medicine and Industry.
- The physic theory behind each application.

The student will be able to:

• To relate the physics fundament with the development of each theory.

UNIVERSIDAD DE GRANADA

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es • To analyze the complexity of each application, and the possible improvements.

CONTENTS OF THE COURSE

- 1. Optimization and process control in industrial plants. Diagnosis of problems. Nucleonic gauges. Non destructive testing. Techniques to obtain welding images.
- 2. Treatment of materials. Composition analysis and structure. Sterilization and modification of properties.
- 3. Radiology. X-ray equipment. Computerized tomography (CT).
- 4. Radiotherapy. Equipment for external radiotherapy: Linear Accelerator (LINAC). Brachytherapy: radioisotopes and equipment. New techniques in radiotherapy.
- 5. Nuclear Medicine. Diagnosis applications: characteristics of the radioisotopes and procedure to obtain them. Gamma camera. Single photon emission computer tomography (SPECT). Positron emission tomography (PET). Applications in therapy.

REFERENCES

- J.E. Turner, Atoms, Radiation and Radiation Protection (John Wiley and Sons, 1995).
- P. Metcalfe, T. Kron and P. Hoban, The Physics of Radiotherapy X-rays from Linear Accelerator (Medical Physics Publishing, Madison, Wisconsin, 1997).
- H.N. Wagner Jr, Z. Szabo and J.W. Buchanan (editors), Principles of Nuclear Medicine (W.B. Saunders Company, Philadelphia, Pennsylvania, 1995) 2nd edition.
- S. Webb (editor), The Physics of Medical Imaging (Institute of Physics Publishing, Bristol, 1998),
- G.C. Lowenthal and P.L. Airey, Practical Applications of Radioactivity and Nuclear Radiations (Cambridge University Press, 2004).

USEFUL LINKS

METHODOLOGY

Lectures: To transmit the contents of the subject, motivating the students to reflection, facilitating the discovery of relationships between different concepts and promoting a critical mindset.

Seminars: To develop in the students the cognitive and procedural skills of the subject.

Academic tutoring: To guide the autonomous and team work of students, focusing on different aspects of the subjects and guide the comprehensive academic training of the student.

Study and independent work of students: To foster in the student the ability to self-regulate their learning, by planning, designing, evaluating and adapting it to their particular conditions and interests.

Teamwork: To encourage students in the generation and exchange of ideas, identification and analysis of different views on a topic, generalization or transfer of knowledge and critical assessment of it.

UNIVERSIDAD DE GRANADA

EVALUATION SYSTEM

- 1. Seminars. Oral presentation of work developed independently. Minimum weight: 40 - Maximum weight: 70.
- 2. Personal and team work: Active participation in lectures and discussions Minimum weight: 30 - Maximum weight: 60

ADITIONAL INFORMATION

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es