GUIA DOCENTE DE LA ASIGNATURA FIABILIDAD Y DAÑO CONTINUO

Curso 2015- 2016

Fecha última actualización: 11/05/15 Fecha aprobación CAM: 29/05/15

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
Calidad y Daño	Fiabilidad y Daño	1º	1º	3,6	Optativa
PROFESORES			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)		
Guillermo Rus Carlborg (GRC, 1º parte) José Félix Rodríguez Matas (JFRM, 2º parte)			GRC: DETS Ingeniería de Caminos, C y P, 4ª planta, Desp. 13, <u>grus@ugr.es</u> JFRM: <u>jfrodrig@unizar.es</u> (U. Zaragoza)		
			HORARIO DE TUTORÍAS		
			Consulte en Acceso Identificado > Aplicaciones > Ordenación Docente		
MÁSTER EN QUE SE IMPARTE: OTROS OFERTA		MÁSTERES EN LOS QUE PODRÍA R:			
MÁSTER DE ESTF	RUCTURAS				

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Tener conocimientos adecuados sobre:

- Elasticidad y mecánica
- Evaluación No Destructiva
- Probabilidad

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Se pretende proporcionar a los alumnos los conocimientos y práctica necesarios para el análisis de fiabilidad estructural. El enfoque principal del curso es en las aplicaciones prácticas de la fiabilidad estructural, proporcionando los conceptos básicos, su interpretación y demostrando su uso mediante ejemplos y aplicaciones de interés ingenieril.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Competencias generales:

- CB1 Aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB2 Integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB3 Comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB4 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias específicas:

- CE3 Conocer y emplear técnicas y algoritmos para la optimización de problemas complejos
- CE5 Conocer y emplear la descripción estocásticas de cargas y resistencias estructurales en el proyecto y cálculo dinámico
- CE10 Conocer modelos de daño estructural
- CE12 Conocer y emplear técnicas de identificación de parámetros y daño estructural
- CE15 Ser capaz de realizar búsquedas bibliográficas de documentos científicos
- CE18 Conocer y ser capaz de seleccionar técnicas de laboratorio para medidas experimentales en estructuras

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno conocerá y comprenderá:

Los conocimientos y práctica necesarios para el análisis de fiabilidad estructural. El enfoque principal del curso es en las aplicaciones prácticas de la fiabilidad estructural, proporcionando los conceptos básicos, su interpretación y demostrando su uso mediante ejemplos y aplicaciones de interés ingenieril.

El alumno será capaz de:

- Resolver manualmente problemas de cálculo de fiabilidad estructural
- Resolver mediante software matemático computacional problemas completos de cálculo de fiabilidad

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

- Introducción al fallo
- Incertidumbre
- Concepto de fiabilidad
- Cálculo computacional de fiabilidad
- Cálculo analítico de fiabilidad
- Modelos de daño no lineales

TEMARIO PRÁCTICO:

• Cálculo computacional de fiabilidad. Prácticas computacionales

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- SUNDARARAJAN, C., Probabilistic Structural Mechanics Handbook. CHAPMAN & HALL, 1995
- CRUSE, T. A., Relialility Based Mechanical Design, Marcel Dekker, 1997
- CASCIATI, F. & FAVARELLI, L., Fragility Analysis of Complex Structural Systems, J. Wiley, 1991
- AUGUSTI, G., BARATTA, A. & CASCIATI, F., Probabilistic Methods in Structural Engineering, Chapman and Hall, 1984
- BIROLINI, A., Reiliability engineering: theory and practice, Springer, 1999
- DITLEVSEN & MADSEN, Structural reliability Methods, Wiley, 1996
- HALDAR & MAHADEVAN, Reliability Assessment using Stochastic Finite Element Analysis, Wiley, 2000
- NOWAK & COLLINS, Reliability of Structures, McGraw-Hill, 2000
- SCHEINER, Introduction to safety and reliability of structures, IABSE-AIPC-IVBH, 1997
- LARSON, H.J, Introduction to probability theory and Statistical Inference. Wiley, New York, 1982.

Artículos importantes:

- Ang A, Cornell C.A., 1974. Reliability bases of structural safety and design. Journal of the structural division. Vol. 100, No ST9, pp. 1755-1769.
- Hasofer A, Lind N., 1974. Exact and invariant second-moment code format. J of the engng mechanics division. Vol. 100, No EM1, pp. 111-121.

ENLACES RECOMENDADOS

Contenidos y material de la asignatura disponible para descarga en la web del profesor: http://www.ugr.es/~grus/docencia_fiabilidad.htm

METODOLOGÍA DOCENTE

Codificación/ numeración (máximo 3 caracteres)	Descripción de la Actividad Formativa	Horas	% Presencialidad
AF1	Clases teóricas	20	100
AF2	Clases prácticas	4	100
AF3	Trabajos tutorizados	10	0
AF4	Tutorías	2	100
AF5	Trabajo autónomo del estudiante	50	0
AF6	Trabajo del estudiante en el centro de prácticas	0	0
AF7	Evaluación	4	100
	Horas totales y presenciales	90	30

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Codificación / número	Descripción del Sistema de Evaluación	Ponderación mínima	Ponderación máxima
E1	Pruebas, ejercicios y problemas, resueltos en clase o individualmente a lo largo del curso	30	40
E2	Valoración final de informes, trabajos, proyectos, etc. (individual o en grupo)	0	50
E3	Pruebas escritas	0	20
E4	Presentaciones orales	10	50
E5	Memorias	0	0
E6	Aportaciones del alumno en sesiones de discusión y actitud del alumno en las diferentes actividades desarrolladas	40	80
E7	Defensa pública del Trabajo Fin de Máster	0	0

INFORMACIÓN ADICIONAL

