MASTER UNIVERSITARIO EN ESTRUCTURAS

GUIA DOCENTE DE LA ASIGNATURA

AÑO ACADÉMICO: 2018-19

VIBRACIONES DE SISTEMAS CONTINUOS

(Fecha última actualización: 19/05/2018)

(Fecha de aprobación en Comisión Académica de Máster: 31/05/2018)

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
Sísmica y Dinámica Estructural	Vibraciones de sistemas continuos	1º	2°	3,6	Optativa
PROFESORES		DIRECCIÓN y HORARIO TUTORÍAS			
Alejandro E. Martínez Castro (resp.)		http://directorio.ugr.es/static/PersonalUGR/*/show/2e707c999cbb1b15c87623dc524edde1			
Salvador Monleón Cremades		smonleon@upv.es (U.P. Valencia)			

PRERREQUISITOS Y/O RECOMENDACIONES

Se recomienda tener cursada la asignatura de Dinámica de Estructuras.

Es recomendable tener conocimientos adecuados de:

- Geometría diferencial de curvas y superficies.
- Ecuaciones Diferenciales.

En la asignatura se introducirán no obstante todos los fundamentos matemáticos necesarios.

BREVE DESCRIPCIÓN DE CONTENIDOS

Se presenta un tratamiento analítico (exacto) de las vibraciones en sistemas de masa y elasticidad distribuida, cuyos ejemplos más representativos son, por orden de dificultad creciente, los cables, vigas, membranas, placas y sólidos.

Se presentan los métodos clásicos (newtonianos) para formular las ecuaciones diferenciales del movimiento y, a continuación, la metodología unificada o lagrangiana. Se resolverán ejemplos ilustrativos, propios de la ingeniería civil, mediante desarrollo manual y también empleando códigos numéricos y simbólicos basados en Python, C++, Mathematica y Matlab.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Competencias básicas

- CB1: Aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB2: Integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB3: Comunicar sus conclusiones –y los conocimientos y razones últimas que las sustentan– a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB4: Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias específicas

- CE7: Conocer los fundamentos de la dinámica estructural y emplear técnicas de análisis para sistemas simples y complejos ante diferentes tipos de carga.
- CE8: Aplicar la dinámica estructural al cálculo y proyecto de estructuras sometidas a cargas dinámicas.
- CE9: Conocer y emplear las técnicas de caracterización y evaluación de las fuentes de

MASTER UNIVERSITARIO EN ESTRUCTURAS

- excitación dinámica sobre estructuras.
- CE14: Conocer y emplear modelos de comportamiento avanzados de las estructuras de acero.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno conocerá y comprenderá:

- Planteamientos clásico y variacional de los problemas vibratorios en sistemas continuos.
- Método de separación de variables. Ecuaciones diferenciales ordinarias en problemas vibratorios. Concepto de Funcional. Ecuaciones de Euler-Lagrange. Formulación unificada.
- Resolución numérica aproximada de problemas vibratorios: métodos de Ritz y Galerkin.
 Cociente de Rayleigh.
- Problemas vibratorios con planteamiento clásico en casos 1D: cuerda vibrante, vibraciones axiles y torsionales en barras. Vibraciones lineales y no lineales. Amortiguamiento y fuentes de amortiguamiento.
- Problemas vibratorios en vigas. Viga de Bernoulli-Euler. Influencia de la masa rotacional y viga de Rayleigh. Viga de Timoshenko con inercia rotacional.
- Problemas vibratorios en membranas, placas y láminas.
- Problemas vibratorios en sólidos. Contraste con soluciones para sistemas continuos 1D, 2D, 3D.
- Programación de problemas de vibraciones en distintos entornos: orientado a objetos (C++, Python), simbólicos (Mathematica), Interpretado (Matlab).

El alumno será capaz de:

- Plantear un problema de vibraciones en un sistema continuo general, independiente del método particular de resolución numérica.
- Obtener numéricamente frecuencias naturales y modos de vibración mediante métodos numéricos o analíticos.
- Plantear e implementar en entorno computacional de cálculo simbólico y numérico
 (Mathematica, Python, Matlab, Maxima, C++) problemas vibratorios en sistemas continuos.

TEMARIO DETALLADO DE LA ASIGNATURA

PARTE I: FORMULACIÓN CLÁSICA O NEWTONIANA

- Tema 1. Conceptos previos: ecuaciones diferenciales ordinarias; oscilador de 1 GDL; concepto de funcional, ecuaciones de Euler-Lagrange.
- Tema 2. Concepto de sistema continuo.
- Tema 3. Vibraciones transversales en cuerdas.
- Tema 4. Vibraciones longitudinales y torsionales en barras.
- Tema 5. Vibraciones transversales en vigas.
- Tema 6. Vibraciones en membranas.
- Tema 7. Vibraciones en placas.
- Tema 8. Vibraciones en láminas.
- Tema 9. Vibraciones en sólidos.

PARTE II: FORMULACIÓN VARIACIONAL O LAGRANGIANA

- Tema 1. Modelado geométrico y mecánico 1D de las piezas alargadas.
- Tema 2. Aplicación al estudio de la torsión mixta y de las vibraciones transversales y axiles de la viga recta.
- Modelado geométrico y mecánico 2D de las láminas delgadas.
- Aplicación a la placa recta y a la lámina cilíndrica.

BIBLIOGRAFÍA

MASTER UNIVERSITARIO EN ESTRUCTURAS

- 1. Vibrations of Continuous Systems. A. W. Leissa and M. H. Qatu.
- 2. Vibration of Solids and Structures under Moving Loads. L. Fryba.
- 3. Dynamics of Structures. J.L. Humar
- 4. Analytical Methods in Vibrations. Leonard Meirovitch
- 5. Vibration of Plates. Arthur Leissa
- 6. Formulas for Natural Frequency and Mode Shape. R.D. Blevins
- 7. Ingeniería de Puentes. Análisis Estructural. Salvador Monleón
- 8. Curso de Puentes. Salvador Monleón
- Análisis de vigas, arcos, placas y láminas: una presentación unificada. Salvador Monleón
- 10. Vibration Problems in Engineering. W. Weaver, S.P. Timoshenko, D.H. Young
- 11. Dynamics of Structures: Theory and Applications to Earthquake Engineering. A.K. Chopra
- 12. Dynamics of Structures. R.W. Clough, J. Penzien

ENLACES RECOMENDADOS

Página Moodle de la asignatura

METODOLOGÍA DOCENTE

- Lección Magistral / Expositiva. Se expondrán los contenidos teóricos, con ejemplos explicativos. Clase presencial.
- Resolución de problemas y estudio de casos prácticos. Se realizará parte en clase, y parte mediante trabajo individual del alumno, con entregas de ejercicios resueltos por parte del alumno. Parte de estos ejercicios tendrá contenido computacional.
- Realización de dos trabajos individuales, uno para cada parte de la asignatura.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

La asignatura se evaluará como sigue:

- Asistencia a clase y resolución de tareas con fecha de entrega prefijada, y la participación del alumno en las clases (30% de la nota final)
- Realización de dos trabajos individuales (uno para cada parte de la asignatura) en el que deberán aplicar los conocimientos adquiridos (70% de la nota final).

INFORMACIÓN ADICIONAL

