MASTER UNIVERSITARIO EN ESTRUCTURAS

GUIA DOCENTE DE LA ASIGNATURA

MECÁNICA COMPUTACIONAL II: ELEMENTOS DE CONTORNO

Fecha de última actualización: 11/05/2016 Fecha de aprobación en CAM: 27/05/2016

AÑO ACADÉMICO: 2016-17

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
FUNDAMENTOS COMPUTACIONALES	Mecánica Computacional II: Elementos de Contorno	1º	1º	3,6	Optativa
PROFESORES		DIRECCIÓN y HORARIO TUTORÍAS			
Francisco J. Suárez Medina (resp.)		http://directorio.ugr.es/static/PersonalUGR/*/show/ 9f82bda510a27c73adeab416c80d7cfa			
Felipe García Sánchez		fgsanchez@uma.es (U.Málaga)			

PRERREQUISITOS Y/O RECOMENDACIONES

Tener conocimientos previos sobre Mecánica de los Medios Continuos y Análisis de Estructuras

BREVE DESCRIPCIÓN DE CONTENIDOS

El Método de los Elementos de Contorno no se imparte habitualmente en los planes de las titulaciones admitidas en el programa. Los objetivos de este curso son, por tanto, que los alumnos conozcan en profundidad la metodología que da lugar a las ecuaciones integrales en que se basa el método, así como aspectos numéricos relevantes para su implementación. Se pretende también que los alumnos conozcan las limitaciones del método y su aplicabilidad a través de prácticas tutoradas.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Competencias generales

- CB1 Aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB2 Integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB3 Comunicar sus conclusiones –y los conocimientos y razones últimas que las sustentan– a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB4 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias específicas

- CE1 Conocer herramientas computacionales para el análisis de estructuras,
- CE2 Manejar herramientas computacionales en diversas aplicaciones estructurales
- CE15 Ser capaz de realizar búsquedas bibliográficas de documentos científicos
- CE17 Ser capaz implementar algoritmos de resolución de problemas técnicos

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno sabrá/comprenderá:

- Fundamentos del método de los elementos de contorno
- El MEC para problemas de potencial.
- Tecnología de elementos: problemas planos y tridimensionales
- El MEC para problemas elásticos, 2D y 3D
- o Técnicas complementarias: cargas repartidas, subregiones, problemas axilsimétricos,...

MASTER UNIVERSITARIO EN ESTRUCTURAS

Aplicación del MEC para materiales piezoelectricos, magnetoelectroelásticos y FGM

El alumno será capaz de:

- Desarrollar las ecuaciones básicas del MEC
- Implementar un código básico de MEC en lenguajes de programación
- Emplear un programa de MEC académico y/o comercial para resolver problemas de potencial y elasticidad.

TEMARIO DETALLADO DE LA ASIGNATURA

- 1. Introducción al método de los elementos de contorno
 - Fundamentos del método de los elementos de contorno
 - El MEC para problemas de potencial.
 - Tecnología de elementos: problemas planos
- 2. El MEC para problemas elásticos
 - Problemas bidimensionales de elasticidad
 - Problemas tridimensionales
 - Técnicas complementarias: cargas repartidas, subregiones, problemas axilsimétricos,...
- 3. Materiales avanzados
 - Ecuaciones constitutivas en materiales piezoelectricos, magnetoelectroelásticos y FGM
 - Formulación de Elementos de contorno para materiales avanzados
 - Aplicaciones

BIBLIOGRAFÍA

BIBLIOGRAFÍA:

- BREBBIA & DOMINGUEZ, Boundary Elements: an introductory course, CMP, 1992
- ALIABADI & WROBEL, Boundary element method: Aplications in Solids and Structures, 2 vols, 2002, Wiley.
- BONNET, Boundary integrals equation methods for solids and fluids, Wiley, 1995
- DOMINGUEZ, Boundary elements in Dynamics, CMP-Elsevier, 1993
- LATIF SALEH, Crack growth in concrete using boundary elements, CMP, 1997
- KYTHE, An introduction to Boundary Elements, CRC Press, 1995

ENLACES RECOMENDADOS

Ver Plataforma Moodle de la asignatura

METODOLOGÍA DOCENTE

Codificación/ numeración (máximo 3 caracteres)	Descripción de la Actividad Formativa	Horas	%Presencialidad
AF1	Clases teóricas	20	100
AF2	Clases prácticas	4	100
AF3	Trabajos tutorizados	10	0
AF4	Tutorías	2	100
AF5	Trabajo autónomo del estudiante	50	0
AF6	Trabajo del estudiante en el centro de prácticas	0	0
AF7	Evaluación	4	100
	Horas totales y presenciales	90	30

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

MASTER UNIVERSITARIO EN ESTRUCTURAS

Codificación / número	Descripción del Sistema de Evaluación		Ponderación máxima
E1	Pruebas, ejercicios y problemas, resueltos en clase o individualmente a lo largo del curso	30	40
E2	Valoración final de informes, trabajos, proyectos, etc. (individual o en grupo)	40	50
E3	Pruebas escritas	15	25
E6	Aportaciones del alumno en sesiones de discusión y actitud del alumno en las diferentes actividades desarrolladas	5	10

INFORMACIÓN ADICIONAL

