

Línea de Trabajo fin de Máster 2025-2026

Título	Entornos de Computación Estadística para Redes Neuronales Artificiales
Tipo	INVESTIGACIÓN ⊠ ORIENTACIÓN PRÁCTICA □
Número de alumnos admitidos	1
Profesor(es)/ email	Francisco Javier Arnedo Fernández / arnedo@ugr.es
Descripción	Las Redes Neuronales Artificiales (RNAs) se han convertido en un modelo de aprendizaje estadístico muy utilizado en la actualidad gracias al incremento del poder de cómputo que ha permitido aplicarlas a grandes conjuntos de datos satisfactoriamente. Al tiempo, los entornos computacionales para la implementación de estos modelos han ido ganando en facilidad y escalabilidad.
	Este Trabajo Fin de Máster tiene como objetivo evaluar la eficiencia, curva de aprendizaje, flexibilidad y accesibilidad de los entornos computacionales más utilizados en la práctica como TensorFlow, PyTorch, Keras o JAX.
Objetivos particulares	 Conocer las bases teóricas de los modelos de RNAs y sus aplicaciones. Analizar las diferentes posibilidades de implementación. Realizar un caso práctico en cada uno de los entornos comparados. Obtener conclusiones sobre las razones para elegir un entorno u otro a la hora de realizar la implementación.
Prerrequisitos y recomendaciones	Haber cursado la asignatura de entornos de computación estadística. Tener conocimientos previos de modelos de aprendizaje estadístico.
Plan de trabajo	 Revisión bibliográfica sobre Redes Neuronales Artificiales. Estudio de las diferentes opciones a la hora de implementarlas: TensorFlow PyTorch, Keras, JAX Realización de casos de uso. Escritura de la memoria.
Competencias generales y específicas	CB: 6, 7, 8, 9, 10 CG: 1, 2, 3, 6, 9 CE: 10, 13, 15, 16, 17, 18, 19, 20, 22, 23, 26, 28, 29
Bibliografía	-James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor J. (2023) An Introduction to Statistical Learning with Applications in Python. Springer -Hastie, T.; Tibshirani, R. & Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer; 2nd edBishop, C.; Bishop, H. (2024). Deep Learning: Foundations and Concepts.

- Geron, Aurelien (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems (2nd ed.). O'Reilly.