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Resumen

En este trabajo se estudia la completitud geodésica y su estabilidad en variedades lorentzianas.
Comenzamos contextualizando el trabajo e indicando las nociones básicas de variedades
diferenciables que se van a utilizar. Posteriormente se estudiará la holonomía de una var-
iedad afín, así como un resultado sobre completitud geodésica en este tipo de variedades.
Después, se define una topología en el espacio de las métricas lorentzianas de una variedad,
lo que da una base para el estudio de la estabilidad de la completitud y de la incompletitud.
Se presentan condiciones suficientes para la estabilidad de estas dos propiedades. Final-
mente, recopilando lo que se ha estudiado en los anteriores capítulos, nos planteamos si
existen variedades lorentzianas en las que podamos omitir alguna de las condiciones su-
ficientes de estabilidad o si, de lo contrario, podemos relajar los criterios de estabilidad.
Éste será el caso de espaciotiempos con varios finales tipo Lorentz-Minkowski, esto es, var-
iedades lorentzianas que, fuera de un compacto, tienen componentes isométricas al espacio
de Lorentz-Minkowski. Para encontrar resultados de estabilidad, las conexiones próximas a
la de Levi-Civita y las de la segunda forma fundamental de la región compacta serán esen-
ciales. Sobre la región compacta, se introducirá un concepto de completitud que se verifi-
cará automáticamente si su holonomía es precompacta. Finalmente, se obtendrá un resul-
tado general de completitud y estabilidad para espaciotiempos con varios finales Lorentz-
Minkowski.

Palabras clave: Geometría Lorentziana, Holonomía precompacta, Completitud geodésica,
Estabilidad de la completitud, Final Lorentz-Minkowski, Topologías finas C r .

Abstract

In this work, the properties of completeness and stability of completeness in Lorentzian
manifolds are studied. We start contextualizing the work and introducing basic notions of
differentiable manifolds. Then, holonomy of affine manifolds will be studied, as well as a
result on geodesic completeness in this kind of manifolds. After this, we will define a topol-
ogy in the space of Lorentzian metrics, in order to provide a basis to study stability of com-
pleteness and incompleteness. Sufficient conditions for the stability of these properties are
presented. Finally, using the results studied in the previous chapters, we wonder if in some
kind of Lorentzian manifolds we can omit one of the stability conditions, or if we can relax
the stability criteria. In this last case, we find spacetimes with several Lorentz-Minkowski
ends, that is, Lorentzian manifolds that, out of a compact set, have isometric components to
Lorentz-Minkiowski space. To find stability results in this kind of manifolds, the Levi-Civita
connection and the second fundamental form become essential. In the compact region,
a completeness concept will be introduced, that will be directly verified if its holonomy is
precompact. In the end, a general result on completeness and stability will be obtained for
spacetimes with several Lorentz-Minkowski ends.

Key words: Lorentzian Geometry, Precompact holonomy, Geodesic completeness, Stability
of completeness, Lorentz-Minkowski end, Fine C r topologies.
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Introduction

Geodesic completeness is an essential property of Riemannian and semi-Riemannian man-
ifolds, that has been widely studied. We need to have in mind that the concepts of metric
completeness and geodesic completeness are clearly different. In Riemannian geometry,
both are equivalent, whereas in semi-Riemannian we have to make a distinction. The tar-
get of study along this work will be geodesic completeness of Lorentzian manifolds. This
property serves as a tool to study different aspects of a manifold. For example, geodesic
completeness is a key tool to classify Lorentzian spaceforms and it lies in the core of rela-
tivistic singularity theorems , where curvature criteria and completeness interplay to obtain
focal points and consequences on the global structure of the manifold, as in the celebrated
theorems by Hawking and Penrose (see [3] for a review).

As stated above, geodesic and metric completeness are equivalent in Riemannian geom-
etry. The Hopf-Rinow theorem not only provides this equivalence, but it also ensures that
compactness implies completeness. In the semi-Riemannian case, this theorem does not
hold and there is not analogous theorem to it. In fact, it is remarkable that compact mani-
folds can fail to be geodesically complete. As in semi-Riemannian geometry no well defined
distance is induced by a metric, the study of geodesic completeness rather than metric com-
pleteness becomes primordial. For example, geodesic completeness becomes an essential
property to classify compact Lorentzian spaceforms. So, the proof of its completeness by
Carriére [4] in the flat case, extended to constant curvature by Klinger [10], was a milestone
in the classification problem. It is still open the proof of completeness in the case confor-
mal to constant curvature. However, the completeness of compact Lorentzian manifods
with Abelian geometry has been proved recently in [11].

Geodesic completeness is a global property that can be altered under a small change.
Being a global property, geodesic completeness is lost in any semi-Riemannian complete
manifold if a point is removed. A question along this work is if a small change in the met-
ric can also alter the geodesic completeness or incompleteness. This cannot occur in the
Riemannian case but, as we will see, sometimes a small change in a complete Lorentzian
metric make an incomplete Lorentzian metric, and conversely. Nevertheless, under some
conditions, we can ensure that both complete and incomplete metrics have arbitrarily close
complete, or respectively, incomplete metrics.

As geodesic completeness depends only on the Levi-Civita connection, along this work,
we will consider also properties of non-necessarily metrizable affine connections. Indeed,
the holonomy group of a connected affine manifold and the second fundamental form will
be two central ingredients for the study of completeness and stability of completeness.

This work is addressed to give the proof of the following theorem that will be proven at
the end of the document.
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Theorem. Let (M , g ) be a Lorentzian manifold with m Lorentz-Minkowski ends. If M \K̊ =
∪m

i=1(Ln \K̊i ) and K has precompact holonomy, there exists a compact set K̄ that contains K ,
such that there exists UK̄ (g ) a neighborhood of metrics up to K̄ such that (M , ḡ ) is complete
for ḡ ∈UK̄ (g ).

This work is structured in four chapters. The first chapter is called Preliminaries. In it,
general concepts of differentiable manifolds are included. Lorentzian geometry is defined,
as well as some definitions and characterizations of Lorentzian manifolds. In the second
one, Precompact holonomy and completeness, the primordial objective is to prove a theorem
by Aké and Sánchez in [5]; if a manifold has precompact holonomy and it is compact, then
it is complete. To achieve this result, it is necessary to study properties of the holonomy
groups. In chapter 3, Stability of completeness and incompleteness, we define the concept
of stability and the fine C r topologies in the space of metrics. Then, we state some results
and examples on stability of incompleteness and completeness. The results in stability were
developed by Beem and Ehrlich in [1].

The main purpose of this work is developed in the last chapter, Completeness in mani-
folds close to Ln , and it consists on studying completeness of some characteristic Lorentzian
manifolds when the hypotheses of the theorems of stability of completeness fail. In this
chapter, results of increasing complexity are presented, in order to achieve a more general
result. First, we consider manifolds with a Lorentz-Minkowski end, that is, isometric to Ln

out of a compact set. Convexity arguments will be used in order to ensure completeness.
The first case studied is Lorentzian manifolds that have a spherical Lorentz-Minkowski end.
As the conditions of the general stability are not fulfilled, we will introduce a new kind of
neighborhoods, therefore, we will relax the stability criteria by fixing the metric in the com-
pact complete set. In the case that the compact set is a general compact connected set, we
will need the additional condition of precompact holonomy in order to ensure complete-
ness and stability of completeness. Finally, we will define manifolds with several Lorentz-
Minkowski ends, that is, manifolds that out of a compact set are isometric to some copies of
Ln and we will give a result on completeness and stability in this case, to finally arrive to the
theorem stated above.
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Chapter 1

Preliminaries

Ancient geometry was closely related to the study of shapes inside the space. That is, there
was no point in studying spaces with dimension greater than 3. However, having general-
ized the Euclidean space to an arbitrary dimension, Rn , there was a possibility to extend
geometry. A way to generalize curves and surfaces consists on the definition of manifolds,
as topological spaces locally homeomorphic toRn . That is, a manifold is a topological space
endowed with an atlas, which consists of homeomorphisms to open sets of Rn . Having the
concept of manifold in hand, a whole theory has been developed. In this chapter, we in-
troduce some of the definitions and relevant results in manifolds that will be essential for
the subsequent analysis. Secondly, we will introduce semi-Riemannian metrics so as to give
results that will be used in the following chapters. The contents of this chapter have been
studied in the Master and the Degree of Mathematics, and are included in this work to fix
the concepts and introduce notation.

1.1 Differentiable manifolds

As aforementioned, manifolds have been the backbone of the development of Geometry
over the last two centuries. Along this section, some relevant definitions and results are
introduced, others, that will be excluded, can be found in [6].

Definition 1.1. A differentiable manifold is a topological set provided with an atlas, that is,
a set of homeomorphisms A = {(Ui ,xi )x : Ui ⊆ M → x(Ui ) ⊆ Rn} whose domains cover the
manifold and fulfill the following condition. Given two maps x : U ⊂ M → Rn and y : V ⊂
M →Rn with U ∩V 6= ;, the map y ◦x−1 : x(U ∩V ) → y(U ∩V ) is a diffeomorphism in Rn .

When we talk about differentiable manifolds, we will assume that are Hausdorff and that
have countable bases. In this chapter, we will assume that the manifolds are connected.
In the study of differentiable manifolds differentiability is linked to C ∞ differentiability.
However along this work, we will require C 2 differentiability. The differentiable manifolds
with boundary are defined as the differentiable manifolds but the open sets are taken in
Rn+ = [0,∞)×Rn−1. The tangent space and vector fields are a key tool along this work. Some
concepts must be introduced before. In the next definition differentiable applications are
introduced.

Definition 1.2. Let f : M → R be a function. We say that f is a differentiable function if for

3



4 CHAPTER 1. PRELIMINARIES

every p ∈ M with p ∈U a coordinate chart (U ,x), the function f ◦x−1 : U →R is differentiable
in Rn . The set of differentiable functions is F (M).

If g : M → N is an application, we say that it is a differentiable application if for every point
p there exist coordinate charts (Up ,x) in M and (Vg (p),y) in N such that y◦g ◦x−1 : Up →Vg (p)

is a differentiable application from Rn to Rm .

If M , N are differentiable manifolds of dimension n, h : M → N is bijective and h,h−1 are
differentiable, we say that h is a diffeomorphism.

We say that γ : I → M, where I is an interval, is a differentiable curve if for every t ∈ I
there is a coordinate chart (U ,x) such that x ◦γ is differentiable in R. We say that a curve
is piecewise differentiable if I is compact andγ is differentiable in I \ {t1, t2, . . . , tm} and the
partial derivatives exists at each ti , i = 1, . . . ,m.

We define the partial derivative of a function f : M → R in a point in a coordinate chart x

as: ∂ f
∂x i = ∂( f ◦x−1)

∂ui , where u1, . . . ,un are the coordinates of x(U ) in Rn . This definition is purely
analytical. In every differential manifold of dimension greater than 0, curves can be written
as γ(t ) = (γ1(t ), . . . ,γn(t )). The derivative of a function in a point p = γ(0) along this curve is
given by the following expression:

γ′(0) f = d( f ◦γ)

d t
= d( f ◦x−1)◦ (x◦γ)

d t
=∑

i
(γi )′

∂ f

∂xi
(1.1)

This is the key to regard tangent vectors as either as directional derivatives at each point, or
classes of equivalence of curves, which will be assumed in the remainder.

Tangent space and vector fields

Having the concept of derivative along a curve and the tangent vector, the tangent space of
M at p ∈ M is defined by

Tp M = {γ′(0) : γ is a curve in M with γ(0) = p}, (1.2)

which is endowed with the natural structure of real vector n−space obtained when looking
these vectors as directional derivatives. Then, given a coordinate chart in p, a basis of Tp M

is
{

∂
∂x1 |p , . . . , ∂

∂xn |p
}

. In fact, this is the basis of Tp M for every p in the same coordinate chart,

and thus, we will omit the subindex p. And then, the tangent bundle of a manifold is the
union of the tangent spaces for every point in the manifold.

T M =∪p∈M Tp M

In fact, the tangent bundle has a structure of differentiable manifold itself with dimension
2n (see [6]). To complete this definition, a canonic projection must be added, as:

π : T M → M
v 7→ p

which gives a new definition of the tangent space of a point as a fiber of the tangent bundle,
that is Tp M = π−1(p). Therefore, we are ready to define the vector fields in a manifold as
sections of the tangent bundle:

X : M → T M
p 7→ v

,



1.1. DIFFERENTIABLE MANIFOLDS 5

which means that π ◦ X = i dM . To say that a vector field is differentiable, we add the con-
dition that X is differentiable. The set of vector fields in M is denoted as X(M) and has a
natural structure of a module on the F (M) ring of the smooth functions on M .

Cotangent space and one-forms

The dual of a vector space V is usually denoted as V ∗. As Tp M is a vector space, we can
define the dual of Tp M . In each point, the cotangent space is defined as

T ∗
p M = (Tp M)∗, (1.3)

The elements of T ∗
p M are covectors and are defined as linear functions ωp : Tp M → R. The

cotangent bundle T ∗M is defined as

T ∗M =∪p∈M T ∗
p M ,

which also becomes a vector bundle of the same dimension as T M . The sections of this
bundle are called one-forms, which are dual to vector fields. A special kind of one-forms are
the differential of functions. The differential of a function f ∈F (M) is a one-form d f such
that d f (v) = v( f ), where v( f ) is the derivation of f in the direction of v , for every p ∈ M and
v ∈ Tp M . A basis of T ∗

p M can be given by a basis { ∂
∂x1 , . . . , ∂

∂xn } of Tp M with p in a coordinate

chart as its dual {d x1, . . . ,d xn}.
Usually, the set of one-forms is denoted asΛ1(M), but for the definition of tensors, it is more
illustrating to call them X∗(M).

Tensor fields

Tensor field theory is based on algebra of tensors and the definition of vector fields and one
forms.

Definition 1.3. A tensor field of type (r, s) is a F (M)-multilinear function:

T : X∗(M)× r. . . ×X∗(M)×X(M)× s. . . ×X(M) → F (M)
(ω1, . . .ωr , X1, . . ., Xs) 7→ T (ω1, . . .ωr , X1, . . ., Xs).

A tensor of kind (0,0) is a function f ∈F (M).

Note that tensor fields can be written in the usual tensorial notation as:

Y1 ⊗ . . .⊗Yr ⊗θs ⊗ . . .θs(ω1, . . .ωs , X1, . . ., Xs) =ω1(Y1) · . . . ·ωr (Yr ) ·θ1(X1) · . . . ·ωr (Xr ).

For two differentiable manifolds M , N an application f : M → N induces two applications:

• f∗ :X(M) →X(N ), such that for any p ∈ M and for every function g ∈F (N ) f∗(v)(g ) =
v(g ◦ f ).

• f ∗ : X∗(N ) → X∗(M), such that for p ∈ N with q = f (p), for any vector v in Tp M ,
( f ∗ω)(v) =ω( f∗(v)). A form f ∗(ω) is called the pullback of ω.

This notions can be extended to tensor fields using tensorial products.
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1.1.1 Metrics

Metrics in differentiable manifolds work as a generalization of scalar products. Take for
example, Rn with the global chart that maps Rn to itself and the usual scalar product in each
point. In this case, we would have a manifold provided with a metric given by the usual
scalar product. However, metrics do not need to be positive definite as scalar products are.
The formal definition of a metric follows.

Definition 1.4. Let M be a differential manifold. A metric g in M is a symmetric nondegen-
erate tensor field of kind (0,2).

For each point, this metric is written as gp : Tp M ×Tp M → R. The condition of nonde-
generation is the same as the nondegeration of bilinear forms. This means that if a vec-
tor u fulfills g (u, v) = 0 for all v ∈ Tp M , then u = 0. This scalar product does not have to
be positive definite but it needs to have the same signature in each point, because of the
nondegenerate condition. Hence, metrics are classified by their signature. Let (M , g ) be a
manifold of dimension n provided with a metric. As g is a bilinear form, for any coordinate
system g =∑

i j gi j d xi ⊗d x j . In fact, in every point a basis of vectors can be found such that
gi j = ±δi j . Let p, q be the indices of the metric, such that p is the number of vectors vi of
the basis that gi i = 1 and q is the number of vectors that gi i =−1.

• If q = 0, g is a Riemannian metric and (M , g ) a Riemannian manifold. In this special
case, g is positive definite for every p ∈ M . In [6], it is proven that every differentiable
manifold admits a Riemannian metric.

• If q = n, g is negative definite, and thus, (M ,−g ) is a Riemannian manifold.

• If 1 ≤ p, q ≤ n − 1, g is a semi-Riemannian metric and (M , g ) is a semi-Riemannian
manifold.

In the particular case that q = 1 and p ≥ 1, we say that g is a Lorentzian metric, and thus,
(M , g ) a Lorentzian manifold. A typical example that will be widely studied for this type of
manifolds consists on Ln . It is defined as Rn provided with the following metric:

η=−d x1 ⊗d x1 +d x2 ⊗d x2 + . . .+d xn ⊗d xn . (1.4)

Two manifolds can be related in terms of its metric.

Definition 1.5. Let (M , g ) and (N , ḡ ) be two differentiable manifolds having the same dimen-
sion. If f : M → N is a differentiable application such that for p ∈ M and every v, w ∈ Tp M,
g (v, w) = ḡ (d fp (v),d fp (w)), we say that f is a local isometry.
If, in addition, f is a diffeomorphism, we say that f is an isometry.

If two manifolds are isometric, they have the same metric tensor g , that is, g = f ∗ḡ , the
metric of M is the pullback metric of N . Another important kind of applications are confor-
mal transformations.

Definition 1.6. Let Let (M , g ) and (N , ḡ ) be two differential manifolds having the same di-
mension. If f : M → N is a differentiable application such that for p ∈ M and every v, w ∈
Tp M, Ωg (v, w) = ḡ (d fp (v),d fp (w)) for Ω : M → (0,∞), we say that f is a conformal trans-
formation. In caseΩ ∈R, that is, ifΩ is a constant, f is a homothety.

Notice that ifΩ≡ 1, the conformal transformation is an isometry.
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1.1.2 Affine connections

The affine connections are introduced as a tool to differentiate vector fields in the direction
of others.

Definition 1.7. Let M be a differentiable manifold and X ,Y ∈X(M). An affine connection of
a X respect Y is an application:

∇ : X(M)×X(M) → X(M)
(X ,Y ) 7→ ∇X Y

that has the following properties:

1. ∇X1+X2 Y =∇X1 Y +∇X2 Y .

2. ∇X (Y1 +Y2) =∇X Y +∇X Y2.

3. ∇ f X Y = f ∇X Y .

4. ∇X f Y = f ∇X Y +X ( f )Y

In light of the property 4, we can see that ∇ is not F (M)-bilinear, because it fails to be
linear in the right component. Thus, ∇ is not a tensor. The connection ∇ is determined by
its Christoffel symbols of second kind. They are defined as follows for each point p ∈ M .

Definition 1.8. Let (M ,∇) be a manifold provided with an affine connection, p ∈ M and
{ ∂
∂x1 , . . . , ∂

∂xn } a basis of coordinate vector fields in a chart (U ,x) with p ∈ U . The Christoffel
symbols are differentiable functions Γn

i j : U →R such that:

∇ ∂

∂xi

∂

∂xn = Γn
i j

∂

∂xn . (1.5)

Together with the affine connection, it is natural to define the covariant derivative, that
is, a derivation of fields defined along a piecewise smooth curve, that is, D X

d t = ∇γ′ X when
X ∈X(M). Nevertheless, in the case X ∈X(γ), which are vector fields defined in γ, that may
not be induced by a field in M . See in [6, Chapter 2, prop. 2.2] the next result.

Proposition 1.9. Let (M ,∇) be a differentiable manifold provided with an affine connection
and γ : (a,b) → M a differential curve. Then, there exists a unique covariant derivative with
the following properties:

• D
d t (X +Y ) = D X

d t + DY
d t .

• D f X
d t = γ′( f )X + f D X

d t .

• If X comes from a vector field Y in M, then D X
d t =∇γ′Y .

Now, we have the ingredients to define parallel transport. The idea of parallel transport
consists on transporting a vector field X along piecewise differentiable curves, so that the X
“does not change” along this curve. This property means that the vector is parallel and can
be formally expressed as D X

d t = 0. Besides, next proposition gives the uniqueness of parallel
vector fields.
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Proposition 1.10. Let (M ,∇) be a differentiable manifold with an affine connection, γ : (a,b) →
M a piecewise differentiable curve and a vector v in γ(t0). Then there exists a unique parallel
vector field X ∈X(γ) such that X (t0) = v.

Proof. Let {x1, . . . , xn} be a coordinate chart in p = γ(t0) such that γ(t ) = (γ1(t ), . . . ,γn(t )) and
X =∑

i X i ∂
∂x i . We have that if X is parallel, it must fulfill the following equation:

∇γ′ X = d X k

d t
+∑

i , j
(γi )′(t )X jΓk

i j (γ(t )) = 0 k = 1, . . . ,n. (1.6)

The result in uniqueness is directly followed by differential equation theory, because this
equation is a first order differential ordinary equation whose solution is unique for a given
initial condition.

Then, parallel transport shall be introduced as follows.

Definition 1.11. Let (M ,∇) be a differentiable manifold with an affine connection, γ : [a,b] →
M a curve and a vector v in γ(a). Then, parallel transport is the application:

τ : Tγ(a)M → Tγ(b)M
v 7→ τ(v)

where τ(v) = X (b) and X is the parallel vector field along γ with initial condition v.

Note that parallel transport define an isomorphism from Tγ(a)M to Tγ(b)M . The linearity
comes from the linear character of equation 1.6. The last point to consider is its bijectivity.
It is injective because the unique parallel vector field that is the vector zero in Tγ(b)M is the
null vector, which characterizes injectivity. It is surjective because the two tangent spaces
have the same dimension. We can also consider that τγ−1 = (τγ)−1.

In case the curve is a loop, we may define a group of automorphisms in Tp M , the holon-
omy group, which will be explained in more detail in the second chapter.

Definition 1.12. Let (M ,∇) be a differentiable manifold with an affine connection and let
p be a point of M. Then, the holonomy group is the group of linear transformations that
are a result of parallel translations of vectors along loops that may be either differentiable or
piecewise differentiable with p as their basepoint, with the composition as its operation.

Another important concept is that of geodesics. Classically, geodesics are the “straight”
lines of a manifold.

Definition 1.13. γ : (a,b) → M is a geodesic in a smooth manifold (M ,∇) if Dγ′
d t = 0 along the

curve γ.

This definition means that the velocity field is parallel along the curve. Geodesics can
be obtained solving a second order system of differential equations. If we write γ(t ) =
(γ1(t ), . . . ,γn(t )), and apply the chain rule:

γ′′k (t )+
n∑

i , j
Γk

i jγ
′
i (t )γ′j (t ) = 0, k = 1, . . . ,n (1.7)

The uniqueness of the solution of Cauchy problems of second order leads to the following
result.
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Theorem 1.14. Let (M ,∇) be a smooth manifold. For each p ∈ M and v ∈ Tp M there exists a
unique geodesic γ in M such that γ(0) = p and γ′(0) = v.

Geodesics allow us to define the exponential map. This maps provides a local diffeomor-
phism ofRn and M , given by the uniqueness and existence of geodesics. Every p ∈ M admits
a neighborhood U such that the following application

exp: U ⊆ Tp M → exp(U ) ⊆ M
v 7→ γ(1, p, v)

is a diffeomorphism. The notation γ(t , p, v) is used to denote the point γ(t ) when γ is the
unique geodesic starting at p with direction v .

Geodesics are related to the existence of a distance in Riemannian manifolds. If L(γ) =∫
I

√
g (γ′,γ′) is the length of γ : [0,1] → M , we can define:

d(p, q) = inf
γ:γ(0)=p,γ(1)=q

L(γ). (1.8)

If there exists a curve such that d(p, q) = L(γ), γ is a geodesic up to a reparameterization, see
[6, Chapter 7].

Along this work, geodesic completeness will be studied.

Definition 1.15. (M , g ) is geodesically complete if all geodesics can be defined in R.

For Riemannian manifolds, there is a significant result, the Hopf-Rinow theorem, see [6,
chapter 7], that relates geodesic completeness and metric completeness, among other re-
sults of the theorem.

Theorem 1.16. Let (M , g ) be a Riemannian manifold and p ∈ M. The following statements
are equivalent.

1. expp is defined in the whole Tp M.

2. The closed and bounded sets are compact.

3. M is complete as a metric space.

4. M is geodesically complete.

5. There exists a sequence of compact sets {Kn}n such that Kn ⊂ Kn+1 and ∪nKn = M such
that any sequence of points {qn}n with qn ∉ Kn , then d(p, qn) →∞.

In addition, any of the previous statements imply that for any q ∈ M, there exists a geodesic γ
that joins p and q whose length L(γ) = d(p, q).

In [13], we can find a result on completeness of manifolds.

Theorem 1.17. Let M be a differentiable manifold. Then, M admits a Riemannian metric g
that is complete.
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Levi-Civita connection

Given (M , g ) a manifold with a metric, a natural question is if there exists an affine con-
nection associated to this metric. The Levi-Civita connection is the affine connection that
fulfills the following conditions:

• ∇ is said to be compatible with the metric, that is, the metric tensor is parallel for ∇,
if, for every X ,Y , Z ∈X(M):

X (g (Y , Z )) = g (∇X Y , Z )+ g (Y ,∇X Z ). (1.9)

• ∇ is a symmetric affine connection, that is the torsion:

Tor (X ,Y ) =∇X Y −∇Y X − [X ,Y ] (1.10)

is equal to 0 for every X ,Y ∈X(M). In this case, we say that the connection is symmet-
ric

In [14], we can find a characterization of the Levi-Civita connection.

Theorem 1.18. On a semi-Riemannian manifold M there is a unique symmetric connection
∇ compatible with the metric. ∇ is called the Levi-Civita connection and it is characterized by
the Koszul formula:

2g (∇X Y , Z ) = X
(
g (Y , Z )

)+Y
(
g (X , Z )

)−Z
(
g (Y , X )

)− g (X , [Y , Z ])+ g (Y , [Z , X ])+ g (Z , [X ,Y ]).
(1.11)

Given a coordinate system, the Christoffel symbols can be calculated by using the above
characterization.

Proposition 1.19. For a coordinate system {x1, . . . , xn}, the Christoffel symbols are given by

Γk
i j =

1

2

∑
l

g kl
(
∂gi l

∂x j
− ∂gi j

∂x l
+ ∂g j l

∂xi

)
. (1.12)

Operators

The classical differential operators defined inRn can be defined in any Riemannian or semi-
Riemannian manifold. In the case of the Hessian, it is enough that a connection is defined.

Definition 1.20. Let M be a differentiable manifold provided with an affine connection ∇, a
function f ∈C ∞(M) and X ,Y ∈X(M), the Hessian of a function f is defined as:

Hessf (X ,Y ) = (∇X d f )(Y ) = X (Y ( f ))−d f (∇X Y ). (1.13)

For the gradient, the metric has an essential role.

Definition 1.21. Let (M , g ) be a semi-Riemannian manifold, and f ∈C ∞. The gradient of f
∇ f is defined as the vector field that fulfills

g (∇ f ,Y ) = Y ( f ), (1.14)

for Y ∈X(M).
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1.2 Lorentzian Geometry

For the development of this section, [9, 14] are followed. Lorentzian manifolds have already
been defined as differentiable n-manifolds whose metric has signature p = n −1 and q = 1.
The relevance of Lorentzian manifolds in Physics comes from the development of Special
and General Relativity. As a Lorentzian metric has signature (p, q) = (n −1,1), there are vec-
tors with positive and negative norm, which implies the existence of degenerate vectors,
that is, vectors with norm equal to zero. It is for its signature that Lorentzian manifolds are
essential in the development of General Relativity.

Definition 1.22. Let v ∈ Tp M, v 6= 0.

• If g (v, v) > 0 we say that v is a spacelike vector.

• If g (v, v) < 0 we say that v is timelike vector.

• If g (v, v) = 0 we say that v is lightlike vector.

• If g (v, v) ≤ 0 we say that v is causal vector.

All the vectos can be classified in terms of the first three kind of vectors. Nevertheless,
there are several conventions to classify the zero vector. When we say that a vector is non-
spacelike if it is causal or zero, nontimelike if it is spacelike, lightlike or zero and null if it
is lightlike or zero. An important concept in Lorentzian geometry is that of timelike cones
defined in the tangent space of each point.

Proposition 1.23. Let M be a Lorentzian manifold and p ∈ M. The subset of timelike vectors
of Tp M has two connected parts, each one is called timelike cone.

Proof. Taking {e1, . . . ,en} any orthonormal basis of Tp M and a vector v =∑n
i=1 ai ei , the vec-

tor is timelike if a1 6= 0 and |a1| >
√

(a2)2 + . . .+ (an)2. With this definition, the subset of
timelike vectors has two connected parts.

The causal and lightlike cones are studied in the same way. Cones are useful to introduce
the notions of future and past in Lorentzian geometry.

Definition 1.24. Let (M , g ) be a Lorentzian manifold. A time orientation in p ∈ M is the
choice of one timelike cone, which is called the future of p. The other cone is called the past
of p.

A time orientation in M is a map τ that assigns a timelike cone τp ⊂ Tp M to each p ∈ M
continuously. This means that in each p ∈ M there is some open neighborhood Up such that
a cone Xq ∈ τq for each q ∈Up . (M , g ) is called time orientable.
A spacetime is a connected time orientable Lorentzian manifold endowed with a time orien-
tation.

Proposition 1.25. A Lorentzian manifold (M , g ) is time orientable if and only if it admits a
globally defined timelike vector field X ∈X(M).
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Proof. If (M , g ) is time orientable, take {(Uα,λα)} partition of the unity of the Lorentzian
manifold. Each point is in a finite number of domains Uαi . Because of the previous defini-
tion, take a future-directed timelike vector field in each domain Xi . Because of convexity of
the timelike cone contains any finite sum of these timelike cones. The field X =∑

αλαXα is
the required timelike vector. Conversely, take τp as the time orientation of Xp .

Lorentzian manifolds are endowed with an special topology, the Alexandrov topology. We
introduce some notation in a Lorentzian manifold (M , g ):

• Let p, q ∈ M , we say p ¿ q if there is a smooth future directed timelike curve from p
to q .

• Let p, q ∈ M , we say p ≤ q if there is a smooth future directed nonspacelike curve from
p to q or if p = q .

With this concepts, we can define the chronological and causal pasts and futures of p ∈ M .

• Chronological future: I+(p) = {q ∈ M : p ¿ q}.

• Chronological past: I−(p) = {q ∈ M : q ¿ p}.

• Causal future: J+(p) = {q ∈ M : p ≤ q}.

• Causal past: J−(p) = {q ∈ M : q ≤ p}.

  

Figure 1.1: Open set of the basis of the Alexandrov topology.

In the topology of M as a differential manifold, the chronological pasts and futures are
open subsets of M . This is because in Tp M the set of vectors V + = {v ∈ Tp M : g (v, v) <
0, v is future directed} is open. Considering that the exponential map is continuous and lo-
cally a diffeomorphism expp (V +) is open.
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Definition 1.26. The Alexandrov topology is the topology generated by the open sets I+(p)∩
I−(q) for p, q ∈ M.

As the sets on the form I+(p)∩ I−(q), see figure 1.1, are open in the manifold topology,
the topology of the manifold can either coincide with the Alexandrov topology or be finer.

1.2.1 The causal ladder

In this section, we introduce the ambient of work of the physically viable spacetimes, even
if in our work we will work mainly with generic Lorentzian manifolds. Lorentzian geometry
usually serves to define physical spaces, under some restrictions. For example, a timelike
curve that intersects itself does not match with the physical description of spacetimes, as it
leads to paradoxes. In this section, we study the causal ladder in which some characteristics
of increasing restrictiveness are added to spacetimes. We follow figure 1.2 to structure the
explanation. This section is based on the references [12, 9].

We start denifing chronological and causal spacetimes.

Definition 1.27. (M , g ) is a chronological spacetime if it does not contain closed timelike
curves. If it does not contain closed causal geodesics it is a causal spacetime.

Causal spacetimes, by definition, are chronological spacetimes as well. A stronger type of
spacetime is distinguishing spacetimes.

Definition 1.28. Let (M , g ) be a spacetime and p, q ∈ M. We say that M is a distinguishing
spacetime if it satisfies that I+(p) = I−(q) if and only if p = q.

In a distinguishing spacetime, it is not possible that a causal geodesic is closed, so distin-
guishability implies causality.

Definition 1.29. A spacetime (M , g ) is said to be strongly causal if and only if for any p ∈ M
and for any neighborhood U of p there exists V ⊂U such that any causal curve that leaves V
does not return to it.

An equivalent condition is that a curve with both endpoints in V is completely contained
in U . Another characterization of strongly causal spacetimes comes from its Alexandrov
topology.

Theorem 1.30. A spacetime is strongly causal if and only if the Alexandrov topology is equal
to the topology of M.

In the definition, we use a basis of neighborhood of metrics. The neighborhood of metrics
are connected subsets in Lor(M), the space of Lorentzian metrics, in which their coefficients
are close to those of g . A formal definition is given in Chapter 3.

Definition 1.31. A spacetime (M , g ) is stably causal if there exists a neighborhood of metrics
of g such that M is causal for every metric in U .

But the most common characterization of stable spacetimes follows. For the next step in
the ladder, we will define a time function to give a characterization of stably causal space-
times. A time function is a continuous t : M →R strictly increasing in future-directed causal
curves.
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Globally hyperbolic⇒

Causally simple⇒

Causally continuous⇒

Stably causal⇒

Strongly causal⇒

Distinguishing⇒
Chronological

Figure 1.2: The causal ladder.

Theorem 1.32. (M , g ) is a stably causal spacetime if and only if it admits a time function.

The next two kinds of spacetimes require the notion of time function for their definition.
We will need to understand the concept of admissible measures. Let h be an auxiliary Rie-
mannian metric such that the volume of M is finite, then the volume function that comes
from this measure is the admissible measure m. With this measure, the functions t+, t− are
defined as t+(p) =−m(I+(p)) and t−(p) =−m(I−(p)). These functions are non-decreasing
and continuous in future-directed causal curves by definition, and thus, in case they are
increasing, they can serve as time functions.

Definition 1.33. (M , g ) is a causally continuous spacetime if t+ and t− are time functions.

Intuitively, this means that the chronological future and past vary continuously with the
point. Notice, however, that the causal future and past are not always closed (a simple ex-
ample appears by removing a point in Lorentz-Minkowski). So, the next step ensures this
property.

Definition 1.34. (M , g ) is causally simple if it is causal and J+(p) and J−(p) are the closures
of I+(p) and I−(p) for all p ∈ M.

Finally, we introduce the globally hyperbolic spacetimes.

Definition 1.35. (M , g ) is globally hyperbolic if J+(p)∩ J−(q) is compact for every p, q ∈ M.

Next theorem characterizes globally hyperbolic spacetimes with Cauchy hypersurfaces.
Let S be a hypersurface of (M , g ), then it is a Cauchy hypersurface if it is crossed by any
timelike curve only once. This is a result by [7].

Theorem 1.36. (M , g ) is globally hyperbolic if and only if it admits a Cauchy hypersurface.

All of these kinds of spacetimes are well ordered in the sense that the above levels imply
the lower ones. In figure 1.2, if a level is above another, this level imply the lower one (as well
as the rest levels below this one). See [12] to see the precise proofs for this property.



Chapter 2

Precompact holonomy and
completeness

Along this chapter, it will not matter if the metric is Lorentzian or Riemannian because the
target of study is the parallel transport and its holonomy group. This concept is basic in
Differential geometry, but it has not been studied in the Degree or in the Master. In the
first section, we study some properties of the holonomy group. We start proving that the
holonomy group is well-defined, that is, that it is actually a group with the composition
operation. When we work with the Levi-Civita connection for some metric, we can ensure
that the holonomy group is a subgroup of the orthogonal group of the correspondent signa-
ture. In the second section, there is an interesting result that relates precompact holonomy
and completeness in compact manifolds. This result is independent of the metric, but, as
we will see, the conditions are always fulfilled for compact Riemannian manifolds. Even if
this result is rather simple, it was obtained recently and will serve as a basis for the further
development.

2.1 The holonomy group

For the development of this section, we follow [5]. The holonomy group was introduced in
definition 1.12. As parallel transport is an isomorphism between the two tangent planes in
the endpoints of the curve, if the curve is a loop, both endpoints are the same and parallel
transport is an automorphism. Therefore, the holonomy group for any p ∈ M and for any
connection ∇ is a subset of Aut (Tp M), isomorphic to GL(n,R). In the definition of holon-
omy group, we stated that Holp (∇) is a group, but the group structure needs to be proven.
The operation of this group is the composition, which, as we will see, is related to the con-
catenation of paths.

Definition 2.1. Let α : [0,1] → M ,β : [0,1] → M be two curves such that α(1) = β(0). We call
α∗β the concatenated curve of α and β, which is defined as:

α∗β=
{
α(2t ) 0 ≤ t ≤ 1

2
β(2t −1) 1

2 ≤ t ≤ 1
(2.1)

Note that the definition is given for curves defined in [0,1]. For any interval [a,b] we can
change variable such that the curve has the same trace but it is defined in [0,1]. We want to

15
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(a)

  

=

(b)

Figure 2.1: Parallel transport of a loop of the sphere with the metric induced by the Euclidean
metric in R3 and parallel transport of a loop in Ln .

see that the composition is well defined by analyzing the element given by the composition
of two transformations in Holp (∇).

Proposition 2.2. Let τα,τβ be two automorphisms in Holp (∇). Then, τβ ◦τα = τα∗β.

Proof. Let v ∈ Tp M be a vector. Then, τα(v) is the image of v by the parallel transport of
α. τβ(τα(v)) is the image of τα(v) by its parallel transport along β. Secondly, τα∗β is the
result of applying first the parallel transport of α, τα and secondly the parallel transport of
β, leading to τα∗β = τβ ◦τα.

By the last proposition, it is immediate that the composition is well-defined and that ◦ is
a closed operation. Given that c0 is the constant curve in p, we have that τc0 = i dTp M , the
neutral element. In addition, τ−1

γ = τγ−1 . With the existence of neutral and inverse element,
and proposition 2.2, we have that the holonomy group in p is well-defined as a group.

Another aspect to consider is the relation among holonomy groups in the different points
of the manifold.

Proposition 2.3. Let (M ,∇) be a connected manifold and p, q ∈ M . Let γ : [a,b] → M be a
curve such that γ(a) = p,γ(b) = q. Then,

Holp (∇) = τ−1
γ ◦Holq (∇)◦τγ (2.2)

Proof. Let α be a piecewise differentiable loop in q . Then, we can define a loop in p ᾱ =
γ∗α∗γ−1. We have that τᾱ = τ−1

γ ◦τα ◦τγ is an automorphism in Holp (∇), which leads to

τ−1
γ ◦Holq (∇)◦τγ ⊆ Holp (∇).

On the other hand, let ᾱ be a loop in p. α = γ−1 ∗ ᾱ∗γ is a loop in q . And we have that
¯̄α= γ∗γ−1 ∗ ᾱ∗γ∗γ−1 = γ∗α∗γ−1 is a loop in p such that τ ¯̄α ∈ τ−1

γ ◦Holq (∇)◦τγ. Besides,

τα = τγ ◦τ−1
γ ◦τα ◦τγ ◦τ−1

γ = τ ¯̄α.
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Therefore, Holp (∇) ⊆ τ−1
γ ◦Holq (∇)◦τγ.

With this proposition, we have got that that the holonomy groups of each connected com-
ponent are the same up to an isomorphism, which depends on the curve chosen to go from
one point to another. Hence, we can talk about the holonomy group of a connected man-
ifold and it is not necessary to specify the point. As two examples of holonomy groups, in
figure 2.1a, the holonomy group of the sphere is isomorphic to SO(2). In Ln for any n ∈ N,
see figure 2.1b, the holonomy group is {i dRn }.

In the previous examples, the Levi-Civita connection of a metric has been considered. In
these cases, an additional property can be studied; parallel transport is an isometry.

Theorem 2.4. Let (M , g ) be a differentiable manifold of arbitrary signature and γ : [a,b] → M
any curve joining p and q. τγ is an isometry.

Proof. Let X ,Y be any two parallel vectors in γ. Defining f (t ) = g (X (t ),Y (t )):

f ′(t ) = g

(
D X

d t
,Y

)
+ g

(
DY

d t
, X

)
= 0.

Thus, g (X ,Y ) is constant along the curve and τγ is an isometry because if X (a) = v , Y (a) =
w :

g (τγ(v),τγ(w)) = g (X (b),Y (b)) = g (X (a),Y (a)) = g (v, w).

Because of this theorem, we have that when ∇ is the Levi-Civita connection of a Rieman-
nian manifold, in a coordinate chart

{
∂
∂x1 , . . . , ∂

∂xn

}
where the vector fields are orthonormal in

p, Holp (∇) ≤ O(n), the orthogonal group of dimension n. If the metric has arbitrary signa-
ture (p, q), Holp (∇) ≤ O(p, q), the orthogonal group for this signature. Note that changing
the basis of vectors, so does the matrix representation of Holp (∇), that is, Holp (∇) in the

basis
{

∂
∂y1 , . . . , ∂

∂yn

}
is represented as a conjugate subgroup of when it is represented in the

orthonormal basis
{

∂
∂x1 , . . . , ∂

∂xn

}
. The orthogonal group of signature (p, q) is defined as:

O(p, q) = {
M T ∈GL(n,R) : M · Ip,q ·M = Ip,q

}
. (2.3)

where

Ip,q =



1 0 . . . 0

0
p

...

1 ..
.

..
. −1

q

... 0
0 . . . 0 −1


In the next section, we will work with manifolds that have precompact holonomy. GL(n,R)
is a topological space, that can be seen as a subset of the square matrices, homeomorphic
to Rn2

. Then, a compact subgroup of GL(n,R) is a compact subset. As we have seen that
compact subgroups are compact subsets of Rn2

, they can be characterized as:

1. If {Mn}n is a sequence of matrices in G , it has a convergent subsequence to some
M ∈G .
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2. G is closed and there exists a constant C > 0 such that |Mi j | ≤C for all M ∈G .

We say that a group is precompact if its closure is compact.

As an example of a compact group, we have the Euclidean orthogonal group O(n), which
is closed, as it is f −1(I ) of the following application:

f : GL(n,R) → GL(n,R)
M 7→ M T ·M

It is compact because for every i = 1, . . . ,n, M 2
i 1 + . . .+ M 2

i n = 1, which leads to |Mi j | ≤ 1.
Applying this to the holonomy groups of Riemannian manifolds, we have that Riemannian
manifolds always have precompact holonomy, because their holonomy groups are always
subgroups of O(n).

Nevertheless, if 1 ≤ p, q ≤ n −1, the orthogonal group O(p, q) is not compact. Taking the

orthogonal group O(1,1), we have that

(
sinh(t ) cosh(t )
cosh(t ) sinh(t )

)
∈ O(1,1) for every t ∈ R, whose

coefficients are not bounded. For the orthogonal group with general signature, we have that
the matrices: 

Ip−1

sinh(t ) cosh(t )
cosh(t ) sinh(t )

Iq−1

 ∈O(p, q),

for t ∈ R, which leads to the unboundedness of the orthogonal group, and thus, its non
compactness. In the particular case of Lorentzian manifolds, we cannot ensure that they
have precompact holonomy as the holonomy groups are subgroups of O(n − 1,1). But,
Lorentzian manifolds can have precompact holonomy, because O(n −1,1) can have com-
pact subgroups, take for example {I d} or O(n −1).

An important property of precompact holonomy groups is that if a sequence of vectors
lies in a compact set, the transformed vectors by elements of Holp (∇) lie in a compact set
as well.

Lemma 2.5. Let {vn}n ⊂ K ⊂ Tp M a sequence of vectors and K a compact set in Tp M and let
{τn}n . If Holp (∇) is precompact, the sequence {τn(vn)}n lies on a compact set K̃ of Tp M.

Proof. Recall that Holp (∇) can be represented as a subgroup of the group of matrices GL(n,R)
for some fixed basis and, as it is precompact, there is C > 0 such that the coefficients of
M ∈ Holp (∇) are bounded by C , |Mi j | ≤C . On the other hand, the sequence of vectors lies
in a compact set, therefore, there is C̄ a constant such that ||vn ||∞ ≤ C̄ for n ∈ N. Then,
||τn(vn)||∞ ≤ C̃ for some C̃ , and the sequence {τn(vn)}n lies in a compact set.

In the next section, the precompact holonomy condition is related to the geodesic com-
pleteness in the manifold, when the manifold is compact.

2.2 Holonomy and completeness

Next result was developed in [8]. It offers a way to ensure completeness by studying com-
pactness and the holonomy group. To prove this theorem, we will need to use lemma 2.6.
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Figure 2.2: The geodesic γ through a convex normal neighborhood U , and the sequence of
points {γ(tn)}n converging to p.

Lemma 2.6. Let γ : (a,b) → M be an inextendible geodesic with b <∞. It {tn}n is a sequence
in (a,b) such that {γ(tn)}n and {γ′(tn)} converge in M and T M, respectively, then, γ can be
extended to p.

Proof. For this proof we will follow [14]. In chapter 3, proposition 28, all the curves in T M
obtained as the velocity γ′ of a geodesic can be regarded as the integral curve of the a vector
field X on T M (X ∈ X(T M)). Secondly, we use a result, lemma 56 of chapter 1, that states
that if α : (a,b) → M is an integral curve and {α(tn)} converges for a sequence {tn}n con-
vergent to b, the integral curve can be extended beyond z = lim

n→∞α(tn). Taking γ′ in T M ,

as it is the velocity of a geodesic, we can regard α(t ) = γ′(t ) in (a,b) as an integral curve of
X ∈X(T M). The sequence {γ(tn)}n converges to p ∈ M and the sequence {γ′(tn)} converges
to some v ∈ Tp M . Thus, α= γ′ can be extended beyond b as an integral curve of X , that is,
γ can be extended as a geodesic beyond b.

Theorem 2.7. Let (M ,∇) be a compact manifold provided with a linear connection ∇ and let
p ∈ M. If the holonomy group in p is precompact (in GL(Tp M)), then (M ,∇) is geodesically
complete.

Proof. We will assume that there is an incomplete geodesic arriving to a contradiction with
the precompact holonomy condition. Let γ : [0,b) → M be an incomplete inextendible
geodesic. As M is compact, we can choose a sequence {tn}n convergent to b such that the
sequence {γ(tn)} converges to a point p ∈ M . Because M is a smooth manifold, let U ⊂ M be
an open starshaped normal neighborhood of p. Due to convergence, we may assume that
{γ(tn)}n ⊂U , as it can be seen in figure 2.2. Definingβn as the radial geodesic from p to γ(tn)
and αn = β−1

n ∗γ|[t1,tn ] ∗β1 as the loops in p so that it goes to γ(t1), goes along γ until γ(tn)
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and comes back to p along a radial geodesic. We call v = τβ−1
1

(γ′(t1)), that is, the velocity of
the curve at γ(t1) transported parallelly to p. For the rest of the proof, we will work with that
vector. Recalling that γ is a geodesic, one can define:

vn := ταn (v) = τβ−1
n
◦τγ|[t1,tn ] ◦τβ1 (τβ−1

1
(γ′(t1))) = τβ−1

n
(γ′(tn)).

As Holp (∇) is precompact, that is, Holp (∇) is compact, the sequence of vectors {vn} ⊂ Tp M
lies in a compact set K . To find the contradiction, we need to see that the sequence of veloci-
ties {γ′(tn)} lies on a compact set of T M , implying that it contains a convergent subsequence
and yielding the contradiction by lemma 2.6. Let K̃ ⊂ exp−1(U ) be a compact starshaped
neighborhood of 0 in Tp M such that ρu : [0,1] →U is the radial geodesic with initial velocity
u ∈ K̃ . Let ξ be the map:

ξ : K̃ ×K → T M
(u, v) 7→ τρu (v)

By its construction, ξ is a continuous map. Thus, its image K̄ = ξ(K̃ ,K ) ⊂ T M is com-
pact. Furthermore, this set contains {γ′(tn)}n≥n0 for a sufficiently large n0, because γ(tn) ∈
exp(K̃ ) =U due to its convergence to p. Asρexp−1(γ(tn )) =βn because they are radial geodesics
with the same endpoints, γ′(tn) = ξ(exp−1(γ(tn)), vn),there is a convergent subsequence of
velocities and thus, we find the contradiction with incompleteness.

Observation 2.8. Notice that compact Riemannian manifolds always fulfill the conditions
of the previous theorem. This is because the holonomy group is always a subgroup of a
compact group, and therefore, its closure is always compact. Nevertheless, completeness
was also known by the Hopf-Rinow theorem.



Chapter 3

Stability of completeness and
incompleteness

In this chapter, we study stability of completeness and incompleteness rather than com-
pleteness and incompleteness of semi-Riemannian manifolds themselves. In the first sec-
tion, some example of incomplete Lorentzian manifolds are explained. Then, the con-
cept of stability is introduced, as well as a topology of the space Lor(M) and Pseudo(M)
of Lorentzian and semi-Riemannian metrics of a manifold M . In the third section, the sta-
bility of incompleteness is studied, whereas the stability of completeness is studied in the
last one.

3.1 Some examples of incomplete Lorentzian manifolds

It is widely known that completeness in Riemannian manifolds can be studied using Hopf-
Rinow theorem. However, this theorem cannot be applied to semi-Riemannian manifolds.
In fact, there is not a theorem as strong as Hopf-Rinow theorem to study completeness.
Hence, the concepts of metric completeness and geodesic completeness are separated. As
a remark, even compact Lorentzian manifolds can fail to be geodesically complete whereas
they are complete for any distance. A good example to illustrate that this can happen is the
Clifton-Pohl torus, see [15].

Example 3.1. (Clifton-Pohl torus) The Clifton-Pohl torus is defined as an example of a
compact Lorentzian manifold that is incomplete. Let S = R2 \ {0} endowed with the met-
ric g (x, y) = 2d xd y

x2+y2 .To define the Clifton-Pohl torus, take G = {
f n ,n ∈Z}

the group generated

by f (x, y) = (2x,2y), which are isometries because f ∗g = g . G is properly discontinuous,
because for any p ∈ S, there exists a neighborhood U such that there is a unique f̄ ∈G with
f̄ (U )∩U 6= ;, which is the identity. Then, the Clifton-Pohl torus is defined as the quotient
space TC−P = S/G , which is compact. First, we study a geodesic that is incomplete in S. The
Christoffel symbols for its metric are Γ1

11 = 2x
x2+y2 , Γ2

22 = 2y
x2+y2 and Γk

i j = 0 for the rest index
triplets. Therefore, the geodesic equations are:

x ′′ = 2x
x2+y2 (x ′)2

y ′′ = 2y
x2+y2 (y ′)2

21
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Taking the geodesic γ : (−∞,1) → S defined as γ(t ) = ( 1
1−t ,0

)
, incompleteness in the forward

direction can be seen because γ is not defined in R, as it cannot be defined in t = 1.
Besides, the projectionπ : S → TC−P is a local isometry because TC−P is S under the action

of isometries. The geodesic γ̄=π◦γ : (−∞,1) → TC−P is incomplete as γ was in S.

Next, we characterize the existence of incomplete (necessarily lightlike) geodesics by means
of a simple criterion (we follow [2]).

Lemma 3.2. Let (M , g ) be a Lorentzian manifold and γ : (a,b) → M an inextendible null
geodesic such that γ(0) = γ(1) and γ′(1) = λγ′(0) for some λ > 0. If λ = 1, the geodesic λ is
complete and γ is incomplete otherwise. In particular, if λ> 1, γ is incomplete in the forward
direction and if λ< 1, in the reverse one.

Proof. If λ = 1, the proof is trivial since γ and γ′ are periodic. In case λ > 1, we have that
the velocity increases in a factor λ in each period. We define α(t ) = γ(λt ), a geodesic that
fulfills α(λ−1) = γ(1) = γ(0) = α(0) and α′(0) = λγ′(0) = γ′(1), so it is a null closed geodesic
and α(t ) = γ(1+ t ). Its first loop α[0,λ−1] corresponds to the second loop of γ, γ[1,2]. Thus,
a countably number of loops of γ increase the affine parameter of γ by

∑∞
n=0λ

−n = 1
1−λ−1 .

This is a finite number because λ> 1, and it is an upper bound for the interval of definition,
in fact, as the interval of definition is maximal, b = 1

1−λ−1 < ∞. Therefore, the geodesic is
incomplete in the forward direction. Nevertheless, in the reverse direction, the affine pa-
rameter changes in an infinite number of loops by

∑∞
n=0λ

n =∞.

If λ< 1, the incompleteness is proven equally, studying the loops in the reverse direction
of γ.

Notice that the previous lemma stands only for null geodesics. This is because for space
and timelike geodesics g (γ′,γ′) 6= 0 is a constant and g is positive and negative definite for
this vectors, respectively. Therefore, if the velocity increases by a factor λ > 0, g (λγ′,λγ′) =
λ2g (γ′,γ′), and equality to g (γ′,γ′) stands only forλ= 1. In case the geodesic is null, g (λγ′,λγ′) =
0 remains constant for any λ.

Another typical example of incomplete Lorentzian metrics is Misner cylinder, see [9].

Example 3.3. (Misner cylinder) Misner cylinder is defined on M0 = (0,∞)×Rwith the metric
g (x, y) = d x ⊗d y +d y ⊗d x = 2d xd y . We define the group of isometries G = {φk : φ(x, y) =(
2x, 1

2 y
)
}. This is clearly a group of isometries, given any vector (a,b) with g ((a,b), (a,b)) =

2ab, g (φ(a,b),φ(a,b)) = 2(2a)
(1

2 b
)= g ((a,b), (a,b)). Then, Misner cylinder is M = ((0,∞]×

R)/G , and can be represented in [1,2]×R, identifying (1,2y) ∼ (2, y) as it can be seen in figure
3.1. In the Misner cylinder we can find an example of an incomplete closed geodesic. Let
γ(t ) = (t ,0) be the horizontal straight line starting in γ(0) = (1,0) with velocity γ′(0) = (1,0),
the red vector in figure 3.1. This is a null geodesic because g (γ′,γ′) = 0 and it comes from the
geodesic in M0 defined as the horizontal straight line γ̃ with constant velocity γ̃′(t ) = (1,0).
However in M , let t1 > 0 and t2 = 2t1, γ′(t2) = 2−1γ′(t1). By the previous lemma, the geodesic
is incomplete in the reverse direction.

3.2 Fine C r topologies of metrics

Along this chapter, some results in completeness and incompleteness of Lorentzian mani-
folds are given. The aim of study is the stability of completeness and incompleteness, fol-
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Figure 3.1: In this figure, there is a representation of the Misner cylinder. The blue and red
vector indicates two of the points that are identified.

lowing [2]. The concept of stability in this context must be explained. We say that a property
in a Lorentzian manifold (M , g ) is stable if there exists a neighborhood of close metrics U
of g such that if ḡ ∈ U , (M , ḡ ) fulfills the property. But, to study stability, we need to know
which metrics are close to others and a topology to define the neighborhoods.

A collection of topologies in the space of Lor(M), that is, Lorentzian metrics of a manifold
M , is the fine C r topologies. They are defined in a locally finite covering {Bi }i and such that
for each i Bi lies inside a coordinate chart. Let M be a differential manifold. Two Lorentzian
metrics g , ḡ are said to be δ : M → (0,∞) close in the C r topology if for every p ∈ M and for
every Bi such that p ∈ Bi , the coefficients for the metric in p and its derivatives up to order
r are closer than δ(p), that is,∣∣∣∣ ∂m gi j

∂xk1 m. . . ∂xkm
− ∂m ḡi j

∂xk1 m. . . ∂xkm

∣∣∣∣< δ(p) for i , j ,k` = 1, . . . ,n, `= 0, . . . ,m and m = 0, . . . ,r.

This is denoted as |g − ḡ |r < δ. This concept leads to the definition of C r neighborhoods of
metrics.

Definition 3.4. Let (M , g ) be a Lorentzian manifold, we say that U (g ) is a C r neighborhood
of g in Lor(M) if U (g ) = {ḡ ∈ Lor(M), |g − ḡ | < δ}, where δ : M → (0,∞).

The fine C r topology has these open sets as its basis. Because of the definition, the fact
that C r ⊂C r ′

if r < r ′ follows. The topology of interest along this work is the fine C 1 topol-
ogy, because in the study of geodesic completeness, it is precise to use the metric tensor as
well as its derivatives.

In case the metric is Riemannian or negative definite, we have stability of both complete-
ness and incompleteness for each r ≥ 0. This is because we can take any neighborhood
U (g ) of metrics of g such that C1 < ḡ (v,v)

g (v,v) <C2. The length of any segment of geodesic fulfillsp
C1Lg (γ) ≤ Lh(γ) <p

C2Lg (γ).
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On the other hand, if the metric is semi-Riemannian, we can define neighgorhood of met-
rics in Pseudo(M), the set of semi-Riemannian metrics. In fact, the results of the next sec-
tions work in any semi-Riemannian manifold, Lorentzian or with an arbitrary signature. The
next results show the conditions that an incomplete or complete semi-Riemannian mani-
fold fulfills in order to ensure the existence of a neighborhood of incomplete, respectively
complete, metrics for the differentiable manifold. The results of next sections were devel-
oped by Beem and Erlich. They establish sufficient conditions for complete and incomplete
semi-Riemannian manifolds to ensure the existence of a C 1 neighborhood of incomplete
(resp. complete) metrics in Pseudo(M).

3.3 Stability of incompleteness

The purpose of this section is to introduce a result that ensures that an incomplete Lorentzian
manifold (M , g ) may be stable, in the sense that there exists U (g ) a C 1 neighborhood of met-
rics such that if ḡ ∈ U (g ), (M , ḡ ) has an incomplete geodesic as well. Next example shows
that an incomplete Lorentzian manifold has close metrics that are incomplete as well. We
remark that this example does not show that incompleteness is stable, but that there can be
Lorentzian metrics close to an incomplete one that are incomplete.

Example 3.5. LetR2 be endowed with the metric g (x, y) = 2d xd y+τ(x)d y2, where τ :R→R

is a periodic function of period 1 and τ(0) = 0. Then, define the torus T2 = R2/Z2, where Z2

denote the group of translations in the x and y axes, clearly properly discontinuous. We take
the null geodesic starting in γ(0) = (0,0) with velocity v = (0,1). This geodesic is defined as a
parametrization of y-axis for R2 and it is its projection in T2. It is clearly null because ||v || =
0. We study completeness of that geodesic. To study this, we need the geodesic equations
in order to understand the behavior of γ. γ is constant in the x-axis, we just need to study y
direction. Recall that τ(0) = 0 and that τ′(0) is a constant along all the geodesic.

Γ2
11 = 0
Γ2

12 = 0

Γ2
22 = τ′(0)

2

(3.1)

Equation (3.1) shows the results on the Christoffel symbols that are needed to study γ. There
are two cases:

• If τ′(0) = 0, the geodesic is periodic and its speed is constant, because y ′′ = 0. Then, γ
is a complete geodesic.

• If τ′(0) 6= 0, the geodesic is not complete. Taking the equation of geodesics y ′′ =
τ′(0)

2 (y ′)2, γ is constantly varying, it is either constantly growing (if τ′(0) > 0) or con-
stantly decreasing (if τ′(0) < 0).

If τ′(0) = ε > 0, there exist close metrics such that τ(0) > 0 as well, and therefore T2 with
these metrics is incomplete as well.

Example 3.5 is another example of a compact Lorentzian manifold that is incomplete,
as we saw in example 3.1, the Clifton-Pohl torus, in the beginning of this chapter. It will
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be useful as well in the next section, to see an example of an complete manifold in which
completeness fails to be stable.

The concept of imprisonment of a geodesic is not only essential for the study of stability
of incompleteness, but also for stability of completeness.

Definition 3.6. Let (M , g ) be a differentiable manifold provided with a metric and γ : M →
[0,b) an inextendible geodesic in the forward direction. We say that γ is partially imprisoned
in a compact set K if there exists a sequence {tn}n in [0,b) such that lim

n→∞ tn = b and γ(tn) ∈ K

for n ∈ N. Now, suppose that γ : (a,b) → M is an inextendible geodesic. We say that γ is
imprisoned in a compact set K when Im(γ) ⊂ K .

Note that imprisonment implies partial imprisonment and that the whole geodesic is
contained in a compact set, while partial imprisonment implies that a geodesic has a se-
quence of points in K , a compact set. Then, the geodesic may leave the compact set and
return to it an infinite number of times. Nonimprisonment of geodesics will be a sufficient
condition for the stability of incompleteness, as well as for stability of completeness.

Next theorem gives sufficient conditions for stability of incompleteness. This theorem is
shown in [2, Chapter 7]. In this book, the following lemmas are essential for the proof of
theorem 3.9. Another key tool we will use is an arbitrary distance d in the manifold.

Lemma 3.7. Let (M , g ) be a semi-Riemannian manifold and γ : (a,b) → M a geodesic of g .
Let W be a neighborhood of γ([t1, t2]) for t1 < t2 ∈ (a,b). There is a neighborhood of γ′(t1)
in T M and a constant ε > 0 such that if |g − ḡ |1 < ε in W and if γ̄ is a geodesic of ḡ with
γ̄′(t1) ∈V , then the domain of γ̄ includes t2 and γ̄(t ) ∈W for t1 ≤ t ≤ t2.

Lemma 3.8. Let (M , g ) be a given semi-Riemannian manifold, γ : (a,b) → M a geodesic of
g and W be a neighborhood of γ([t1, t2]) for t1 < t2 ∈ (a,b). If V1 is a neighborhood of γ′(t1)
in T M, there is ε > 0 and a neighborhood V2 of γ′(t2) such that if |g − ḡ |1 < ε and if γ̄ is a
geodesic of ḡ with γ̄′(t2) ∈V2, then γ̄′(t1) ∈V1 and γ′(t ) ∈W for all t1 ≤ t ≤ t2. Furthermore, if
γ is timelike or spacelike, V2 and ε can be chosen so that each v ∈ V̄2 is timelike or spacelike.
If γ is null, ε can be chosen such that each ḡ has some null vectors in V2.

Theorem 3.9. Let (M , g ) be a semi-Riemannian manifold. If (M , g ) has an incompete geodesic
in the forward direction γ : (a,b) → M, with b <∞, that is not partially imprisoned in any
compact set K when t → b, then there exists a C 1 neighborhood of metrics U (g ) such that each
ḡ ∈U (g ) has an incomplete geodesic. In addition, if (M , g ) has an incomplete null (resp. time-
like, spacelike) geodesic, (M , ḡ ) has an incomplete null (resp. timelike, spacelike) geodesic.

Proof. We start constructing the sequences {t j } j , {D j } j and {L j } j . Choosing t0 ∈ (a,b), t1 >
t0, D1 > 1 such that D1 = d(γ(t0),γ(t1)) and d(γ(t0),γ(t )) > D1 for t1 < t < b. The existence
of t1 is given by the non partial imprisonment condition. Secondly, L0 = 0 and L1 = 1+
sup{d(γ(t0),γ(t )) : t0 < t < t1}. As an example, in figure 3.2 for a curve γ and γ(t0), there is
γ(t1), D1 and L1. For the rest of the sequence suppose that ti , Di and Li are given up to j −1.
Then, D j > L j−1 and must fulfill D j = d(γ(t0),γ(t j )) and D j < d(γ(t0),γ(t )) for t j < t < b. The
existence of D j is given by nonimprisonment once again. Finally L j = 1+sup{d(γ(t0),γ(t )) :
t0 < t < t j }. Note that by definition the three sequences are strictly increasing and that
lim
j→∞

D j = lim
j→∞

L j =∞.

With these sequences, we will construct a sequence of subsets of M {W j } j . W1 = {p ∈
M : d(p,γ(t0)) < L1}, W2 = {p ∈ M : d(p,γ(t0)) < L2} and W j = {p ∈ M : L j−2 < d(p,γ(t0)) <
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Figure 3.2: L1, D1 and the set W1 for an election of a geodesic γ and γ(t0).

L j } for j > 2. Now, we will construct another sequence {V j } j of subsets of T M . We take a
neighborhood of non trivial vectors of γ′(t0) as V0.

• If γ′(t0) is timelike, we can take V̄0 as a set of timelike vectors.

• If γ′(t0) is spacelike, we can take V̄0 as a set of spacelike vectors.

• If γ′(t0) is null, we can choose V0 with some null vectors such that V̄0 does not contain
the zero vector.

Supposing Vi is defined up to j −1, we may define V j . With this purpose, V j is defined using
lemma 3.8, that is, we obtain V j a neighborhood of γ′(t j ) and ε j > 0 such that if |g − ḡ |1 < ε j

in W j and γ̄ is a geodesic of ḡ with γ̄′(t j ) ∈ V j , then γ̄′(t j−1) ∈ V j−1 and γ̄(t ) ∈ W j for all
t j−1 ≤ t ≤ t j . Using again lemma 3.8, we have that if γ is timelike (resp. spacelike), so is γ̄.
If γ is null, we assume that V j has null vectors for ḡ . Now, lemma 3.7 implies that if γ̄ is a
geodesic of ḡ such that γ̄′(t j ) ∈V j , then the domain contains t j+1. We may assume that each
V j of the sequence has less than 1

2 diameter, that is di am(π(V j )) < 1
2 . We can assume as well

that ε j+1 < ε j .

The points of M are in a finite number of W j , concretely, in at most two W j , which leads to
the possibility of the construction of a continuous function ε : M → (0,∞) such that ε(p) < ε j

for p ∈W j .

Let ḡ ∈ U (g ) = {ḡ ∈ Pseudo(M) : |ḡ − g |1 < ε(p)}. We will construct {γ̄ j } j a sequence of
geodesics of ḡ that contains a convergent subsequence. First, we will assume that γ is time-
like or, respectively, spacelike. Secondly, we will assume that γ is null. In the first case, we
define γ̄ j satisfying γ̄′j (t j ) = γ′(t j ), therefore γ̄ is timelike (resp. spacelike). In the second

case, we choose γ̄ j such that γ̄′j (t j ) ∈ V j is null. Using the construction of Vk by lemma 3.8,

we get γ̄′j (tk ) ∈ Vk for k ≤ j . For this reason, taking {γ̄ j (t0)} j ⊂ V0 and as V0 has compact

closure, one gets that {γ̄m(t0)}m ⊆ {γ̄ j (t0)} j is a convergent subsequence in V̄0. Using again
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lemma 3.8, if γ is timelike (resp. null or spacelike), γ̄ is timelike (resp. null or spacelike) for
ḡ .

Let γ̄ be an inextendible geodesic of ḡ starting at γ(t0) and with direction lim
m→∞ γ̄

′
m(t0) = v .

Note that each γ̄m(t j ) ∈ π(V j ) for j ≤ m. Besides, γ̄m(t ) converges to γ̄(t ) and γ̄′m(t ) to γ̄′(t )
as m →∞ for every t such that γ̄(t ) is defined. To prove that [t0,b) is in the domain of γ̄, we
use lemma 3.7; if γ̄′(t j ) ∈V j , γ̄(t j+1) exists. In fact, as γ̄m(t j+1) ∈V j+1 for m > j +1, γ̄′(t j+1) ∈
V j+1. Hence [t0,b) is in the domain of γ̄. Using that lim

j→∞
d(γ(t0), γ̄(t j )) =∞, γ̄ is not partially

imprisoned in any compact set if t → b. In addition, b is not in the domain of γ̄, because if
it was, the set γ̄([t0,b]) would be compact, in contradiction with lim

j→∞
d(γ(t0), γ̄(t j )) =∞.

One aspect of interest of this proof is that an incomplete geodesic in a close metric to g
can be defined using the same domain. Next corollary applies for strongly causal space-
times, and as we saw in the causal ladder, to stably causal, causally continuous, causally
simple and globally hyperbolic spacetimes.

Corollary 3.10. Let (M , g ) be a causally geodesically incomplete strongly causal spacetime.
There is a neighborhood of metrics such that each ḡ ∈U (g ) is geodesically incomplete.

Proof. Suppose that γ is a causally incomplete geodesic of g . Then γ is not imprisoned nor
partially imprisoned because of the strong causality condition. Thus, we achieve U (g ) by
using theorem 3.9.

3.4 Stability of completeness

Example 3.5 shows a case in which completeness is instable. Recall that in this example
when τ(0) = 0 and τ′(0) 6= 0, the geodesic with direction v = (0,1) is incomplete, whereas if
τ′(0) = 0, this geodesic is complete. In this case, instability of the completeness of (T2, g )
follows from the fact that a small change in τ′(0) leads to the incompleteness of T2.

For the stability of completeness two conditions are required, nonimprisonment of null
(resp. nonspacelike, nontimelike) geodesics and a null (resp. nonspacelike, nontimelike)
pseudoconvex geodesic system. The first requirement was studied in the previous section.
A pseudoconvex geodesic system is a generalization of convex hulls in Rn . A convex hull of
a compact set K ⊂Rn is the union of all the Euclidean straight segments joining, p, q ∈ K for
all p, q ∈ K . The convex hull in Rn is always a compact set.

Definition 3.11. Let (M , g ) be a Lorentzian manifold, we say that (M , g ) has a pseudoconvex
null (resp. nonspacelike, nontimelike) geodesic system if for each compact subset K ⊂ M, all
null(resp. nonspacelike, nontimelike) geodesic segments joining p, q for every p, q ∈ K lie on
a compact set K̄ .

Then, we are in the conditions to enunciate the theorem of stability of completeness. This
theorem was proven by Beem and Erlich in [1]. For the proof of this theorem, some lemmas
taken from [1] will be necessary. Besides, we will need to define an auxiliar Riemannian
metric h and a collection of sets {A(n)}n∈N. Choosing p ∈ M , A(0) = {p} and A(1) = {q ∈
M : d(p, q) ≤ 2} where d is a Riemannian distance that comes from h. For the rest of A(n),
suppose that for any null (resp. nonspacelike or nontimelike) geodesic γ with endpoints in
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A(n−1) lies in A(n) and additionally the condition d(q, M \ A(n)) > 2 for all q ∈ A(n−1). The
first step of the construction of these sets in in figure 3.3, where in red we have the compact
set that contains all the geodesic segments whose endpoints lie in A(1) and A(2) is given by
the recursive definition.

  

Figure 3.3: Three sets of the sequence {A(n)}n , A(0), A(1) and A(2). In red, we represent the
“convex hull” of A(1).

Lemma 3.12. Let (M , g ) be a semi-Riemannian manifold with no imprisoned null, non-
spacelike or nontimelike geodesics and a null (resp. nonspacelike or nontimelike) psuedo-
convex geodesic system. There exists a C 1 neighborhood of g U (g ) such that if ḡ ∈U (g ) has
a null (resp. nonspacelike or nontimelike) geodesic γ : [a,b] → M with γ(a),γ(b) ∈ A(n), then
γ(t ) ∉ A(n +4) \ A(n +3) for all t ∈ [a,b]. Furthermore, each ḡ has no imprisoned null (resp.
nonspacelike or nontimelike) geodesics and has a null (resp. nonspacelike or nontimelike)
pseudoconvex geodesic system.

Lemma 3.13. Let (M , g ) be a semi-Riemannian manifold with no imprisoned null non-
spacelike or nontimelike geodesics and a null (resp. nonspacelike or nontimelike) psuedo-
convex geodesic system. Let n ∈ N and L > 0 be fixed. There exists an integer k > n + 5
such that if γ : R→ M is any null (resp. nonspacelike or nontimelike)geodesic of (M , g ) with
γ(0) ∈ A(n) \ A(n −1), h(γ′(0),γ′(0)) ≤ L2 and γ(t ) ∈ A(k) \ A(k −1), then |t | > 2.

Lemma 3.14. Let (M , g ) be a semi-Riemannian manifold with no imprisoned null, non-
spacelike or nontimelike geodesics and a null (resp. nonspacelike or nontimelike) psuedocon-
vex geodesic system. Let n > 5 and L > 0 be given. There exist k > n +5 and ε> 0 such that if
ḡ ∈U (g ) satisfies |ḡ−g |1 < ε on A(k)\ A(n−5), then for any inextendible null (resp. nonspace-
like or nontimelike)geodesic γ : (a,b) → M with γ((a,0])∩A(n−5) 6= ;, γ(0) ∈ A(n) \ A(n −1),
h(γ′(0),γ′(0)) ≤ L2, γ(t0) ∈ A(k) \ A(k −1) and t0 ∈ A(k) \ A(k −1), then t0 > 1.

Lemma 3.15. Let (M , g ) be a semi-Riemannian manifold with no imprisoned null, non-
spacelike or nontimelike geodesics and a null (resp. nonspacelike or nontimelike) psuedo-
convex geodesic system. Let n,k ∈N and L be given such that L > 0 and k > n +5. There exists
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N > 0 such that if γ̄ is a null (resp. nonspacelike or nontimelike)geodesic with γ(0) ∈ A(n) and
h(γ̄′(0), γ̄′(0)) ≤ L2, then h(γ̄′(t ), γ̄′(t )) ≤ N 2 for all t with γ̄(t ) ∈ A(k +5).

Lemma 3.16. Let (M , g ) be a semi-Riemannian manifold with no imprisoned null, non-
spacelike or nontimelike geodesics and a null (resp. nonspacelike or nontimelike) psuedo-
convex geodesic system. Let n,k ∈N and L be given such that L > 0 and k > n +5. There exist
N ,ε > 0 such that if ḡ ∈ U (g ) with |ḡ − g |1 < ε on A(k + 5) \ A(n − 5) and if γ : (a,b) → M
and if γ̄ : (a,b) → M is a null (resp. nonspacelike or nontimelike)geodesic of ḡ with γ̄((a,0])∩
A(n −5) 6= ;, γ̄(0) ∈ A(n) \ A(n −1), h(γ̄′(0), γ̄′(0)) ≤ L2, γ̄(t0) ∈ A(k) \ A(k −1) adn t0 > 0, then
h(γ̄′(t0), γ̄′(t0)) ≤ N 2 +1

Using these five lemmas we can prove the following theorem of stability of completeness.

Theorem 3.17. Let (M , g ) be a semi-Riemannian manifold null (resp. nonspacelike or non-
timelike) geodesically complete, provided with a null (resp. nonspacelike or nontimelike)
pseudoconvex geodesic system and non imprisoned in a compact set null (resp. nonspace-
like or nontimelike) geodesics. Then, there exists a C 1 neighborhood U (g ) such that (M , ḡ ) is
null (resp. nonspacelike or nontimelike) geodesically complete and besides, it has a null (resp.
nonspacelike or nontimelike) pseudoconvex geodesic system and non imprisoned null (resp.
nonspacelike or nontimelike) geodesics.

Proof. Using lemma 3.12, we find a C 1 neighborhood of metrics U1(g ) fulfilling the condi-
tions of this lemma, which is given by a positive funciton δ : M → (0,∞). Now we define
four sequences {n j } j , {k j } j , {ε j } j and {L j } j for j = 1 ∈ N. Initially, n1 = 6 and L1 = 1. k1 is
calculated using lemma 3.13 and ε1 with lemma 3.16. For the rest of the sequence, suppose
that n j and L j are given, and that k j is obtained by using lemma 3.13. Then, n j+1 = k j and

using the lemma 3.16 we obtain the constants ε and N , we set ε j = ε and L j+1 =
p

N 2 +1.

We can construct a continuous function ε : M → (0,∞) with the conditions:

• ε(p) < δ(p) for p ∈ M .

• ε(p) < ε j for p ∈ A(k j +5) \ A(n j −5) and j = 1 ∈N

Note that this function is well defined because each p ∈ M is at most in two sets of the
form A(k j + 5) \ A(n j − 5). With this function we construct a C 1 neighborhood of metrics
U (g ) = {ḡ ∈ U1(g ) : |ḡ − g |1 < ε}. As U (g ) ⊂ U1(g ), every ḡ ∈ U (g ) has a pseudoconvex null
(resp. nonspacelike or nontimelike)geodesic system and has no imprisoned null (resp. non-
spacelike or nontimelike)geodesics, but completeness has to be proven.

Let γ̄ : (a,b) → M be any inextendible null (resp. nonspacelike or nontimelike)geodesic
in (M , ḡ ), with ḡ ∈ U (g ). As the sequence {A(n)}n covers M , there is a first j0 such that
Im(γ̄)∩(A(n j0 )\ A(n j0−1)) 6= ;. We assume that γ̄(0) ∈ A(n j0+1)\ A(n j0+1−1), h(γ̄′(0), γ̄′(0)) ≤
L2

j0+1 and that Im(γ̄)∩(A(n j0 )\ A(n j0−1)) for negative values of t . Applying lemmas 3.14 and
3.16 to n j and k j with n j+1 = k j , for each j ≥ j0, γ̄ increases t by, at least, one unit each time
it goes from (A(n j ) \ A(n j −1)) to (A(n j+1) \ A(n j+1 −1)). Thus, b =∞, that is, γ̄ is complete
in the forward direction. In the reverse direction and proceeding in the same way, a = −∞
and hence, γ̄ is complete.



30 CHAPTER 3. STABILITY OF COMPLETENESS AND INCOMPLETENESS

If a manifold is null, nonspacelike and nontimelike complete and fulfills the conditions of
the theorem for these three kinds of geodesics, there exists a neighborhood of metrics U (g )
such that (M , ḡ ) is null, nonspacelike and nontimelike complete. Note that in this case, we
can take the neighborhoods of metrics U1(g ), U2(g ), U3(g ) ensuring null (resp. nonspacelike
or nontimelike) completeness, and define U (g ) =U1(g )∩U2(g )∩U3(g ). From this point, if
the type of completeness is not specified, it will be assumed that the manifold is complete
in the three senses.

One trivial example of a stable complete Lorentzian manifold is Ln . As geodesics are
straight lines, all its geodesics are non imprisoned. Besides, it has a pseudoconvex geodesic
system. Therefore, by theorem 3.17, there exists a neighborhood of metrics U (η) such that
if ḡ ∈U (g ), (Rn , ḡ ) is a complete manifold.

If a spacetime (M , g ) is globally hyperbolic and nonspacelike complete, we can ensure
that there is a C 1 neighborhood of metrics in which M is complete.

Theorem 3.18. Let (M , g ) be a globally hyperbolic spacetime. If M is nonspacelike complete,
there is a C 1 neighborhood of metrics U (g ) such that each ḡ is nonspacelike complete.

Proof. In a globally hyperbolic spacetime, non imprisonment is ensured. In addition, it
has a pseudoconvex nonspacelike geodesic system. It is enough to prove this so that we
are in the conditions of theorem 3.17. Let K be a compact set in M . For each p ∈ K , let
q ∈ I−(p) and r ∈ I+(p). The open set U (p) = I+(q)∩ I−(r ) contains p and the compact
set K can be covered with a finite number of this kind of sets. As the closure of each U (pi )
is J+(qi ) ∩ J−(ri ), it is compact and we can ensure that K is contained in a compact set
K̃ = ¯U (p1)∪ . . .∪ ¯U (pn) such that the nonspacelike geodesics joining any two points of K are
contained in K̃ .



Chapter 4

Completeness in manifolds close to Ln

In this chapter, we study completeness and stability of Lorentzian manifolds that are iso-
metric to Ln out of a compact set. In spite of the existence of general available criteria for the
stability of completeness, none of them seem to apply here. However, convexity arguments
will allow us to resolve this problem. For this argument, positive definiteness of the second
fundamental form of affine spheres will become essential. We will prove the geodesic com-
pleteness of Lorentzian manifolds that are isometric to Ln out of a compact set is stable,
in the sense that there exists a special kind of neighborhood of metrics UK (g ) such that if
ḡ ∈UK (g ), then (M , ḡ ) is complete. The second fundamental form will be studied in the first
section, whereas in the second section, results on stability of completeness for some specific
kinds of Lorentzian manifolds are presented.

4.1 Preliminaries on the second fundamental form of an affine con-
nection

The second fundamental form is a key ingredient along this chapter. Recall that once an
affine connection has been defined, each hypersurface has a second fundamental form σZ

with respect to each choice of a transverse vector field Z . Let X ,Y ∈ X(S); given an affine
connection ∇ in M , a hypersurface S and a transverse vector Z to the hypersurface S, one
can write:

∇X Y = (∇X Y )T + (∇X Y )⊥. (4.1)

In equation (4.1), (∇X Y )T denotes the tangent component of ∇X Y . Classically, (∇X Y )⊥ de-
notes the orthogonal component of ∇X Y (once a Riemannian metric is provided), neverthe-
less, we take this notation for the transverse component of ∇X Y . The second fundamental
form in S with respect to the transverse vector Z is σZ : X(S)×X(S) →F (S), defined by the
equality:

(∇X Y )⊥ =σZ (X ,Y )Z . (4.2)

Next, we will consider the second fundamental form for affine spheres embedded in Ln ,
so that only the affine structure of Rn will be essential, even though we can take into ac-
count its usual Euclidean structure, or any other auxiliary scalar product, for some choices.
Fix {SR }R>0 a foliation of spheres of Rn \ {0} where R denotes the radius of the spheres, and
N to be the unit inner transverse vector of every sphere, N = −1

t P , where P = ∑
i X i ∂

∂x i is

31
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Figure 4.1: Two hypersurfaces SR and the our choice of transverse vector in a point of each
one.

the position vector. Take SR = {x2
1 + . . .+ x2

n = R2}, where x1, . . . , xn denote the canonical co-
ordinates in Rn . A representation of these spheres and its normal vectors is in figure 4.1.
We are going to see that SR is strongly convex in Ln . As the Levi-Civita connections are the
same for both the Lorentz-Minkowski metric and the Euclidean one due to the equality in
their Christoffel symbols Γk

i j = 0, i , j ,k = 1, . . . ,n, we can work with the Euclidean metric to
calculate the second fundamental form with respect to the unitary inner vector. We can fix
σ=σN and write, which:1

∇0
X Y = (∇0

X Y )T + (∇0
X Y )⊥. (4.3)

For our choice, (∇0
X Y )⊥ is actually a field normal to the hypersurface. In the rest of

the chapter, in the decomposition (4.1), (∇0
X Y )T will be the tangent component, whereas

(∇0
X Y )⊥ will be the transverse component in the direction of N . The second fundamental

form is defined as σ(X ,Y ) in (4.2). Using that ∇0 is the Levi-Civita connection we have:

(∇0
X Y )⊥ =− 1

R

〈
∇0

X Y ,− 1

R
P

〉
P =− 1

R

〈
∇0

X
1

R
P,Y

〉
P

To calculate ∇0
X

( 1
R P

)
, recall that Γk

i j = 0 for i , j ,k = 1, . . . ,n and that ∂x i

∂x j = δi
j , thus ∇0

X

( 1
R P

)=
1
t X and (∇0

X Y )⊥ =−( 1
R

)2 〈X ,Y 〉P = 1
R 〈X ,Y 〉N . As the usual metric is positive definite, so is

the second fundamental form.

Now, observe that the coefficients of the second fundamental form for the Levi-Civita
connection depend on the coefficients of the metric and its derivatives. Note that N is the
normal vector to SR with the Euclidean scalar product, but working with arbitrary connec-
tions this concept is lost. As we are going to work with connections ∇ different to ∇0, we
will be interested in the computation of σ for such a nabla maintaining both the hypersur-
faces SR and the transverse vector N . Taking a coordinate system y1, . . . , yn in an open set
U ⊂Rn such that the first n −1 vectors yield coordinates of each sphere SR and N =− ∂

∂yn is

1Every affine space has a natural affine connection ∇0. This fulfills the following condition: the coordinate
fields are parallel, independently of the coordinates chosen. When a manifold is endowed with a metric, the
Levi-Civita connection has this property.
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the transverse vector (take, for example, N =− ∂
∂r in the spherical coordinates outside zero),

one can write for any connection ∇:

σ
(
∂
∂y i , ∂

∂y j

)
=−d yn(∇ ∂

∂yi

∂
∂y j ) =−Γk

i j d yn
(
∂
∂yk

)
=−Γn

i j .

In particular, this expression shows that the coefficients of the second fundamental form
only depend on the Christoffel symbols, which in turn depend on the coefficients of the
metric and its first derivatives if ∇ is the Levi-Civita connection.

Lemma 4.1. For the Lorentzian scalar product of Ln , there exists a C 1 neighborhood U (η)
of Lorentzian metrics for the Lorentzian scalar product of Ln such that for all the metrics
g ∈ U (η) the second fundamental form σ of each affine sphere SR is positive definite for all
R > 0.

Proof. As calculated above, the coefficients of the second fundamental form for ∂
∂y i and ∂

∂y j

are −Γn
i j . On the other hand, we have calculated that (∇0

X Y )⊥ = 1
R 〈X ,Y 〉N , which leads to

the equality (Γ0)n
i j =−δi j

r 2 for i , j = 1, . . . ,n−1. Thus, from the equation for Γn
i j in terms of the

metric, it can be immediately followed that σ is positive definite for C 1 close metrics.

Recall that a compact hypersurface is said to be convex if,locally (and then globally, be-
cause of the particular structure ofRn), the tangent plane of a point only intersects the man-
ifold in the point. We say that the manifold is strictly convex if, the tangent plane in a point
only intersects the manifold in that point. This condition implies that the second funda-
mental form defined for the inner vector is positive semidefinite and, moreover, positive
semidefiniteness of the second fundamental form implies strict convexity. In case the sec-
ond fundamental form is positive definite, we say that the manifold is strongly convex. Next
lemma shows that if SR is strongly convex, geodesics that leave a sphere of the foliation do
not return to it.

Lemma 4.2. Let (Rn ,∇) a differentiable manifold provided with a connection ∇, {SR }R>0 a
foliation with spheres of Rn \ {0}, and {BR }R>0 the closed Euclidean balls enclosed by SR for
every R > 0. If SR is strongly convex for every R > 0, once a geodesic γ leaves BR , it never
returns to it.

Proof. Suppose that γ : [a,b] →Rn is a segment of geodesic which leaves a ball BR0 at a and
returns to it at b. As the parameter R of the foliation is also the radius of the spheres, it can
be regarded as a continuous function on Rn , and t ◦γ will take a maximum at some point in
(a,b). Without loss of generality suppose it takes its maximum Rmax at smax ∈ (a,b), which
can be assumed to be smax = 0. Then:

(a) (R ◦γ)′(0) = dR(γ′(0)) = 0, leading to γ′(0) ∈ Tγ(0)SRmax .

(b) (R ◦γ)′′(0) ≤ 0.

However, calculating these derivatives explicitly, we have:

(R ◦γ)′′(0) = d 2

d s2 (R ◦γ) = d
d s (dR(γ′)) = (∇γ′dR)(γ′) = HessR(γ′,γ′). (4.4)
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About the last equality, recall the expression of the hessian (1.13). Applying dR to (4.2) we
have dR(∇X Y ) = dR((∇X Y )T )+dR((∇X Y )⊥) =−σ(X ,Y ), as dR(σ(X ,Y )N ) =σ(X ,Y )dR(N ) =
−σ(X ,Y ). Now, it is possible to find a relation between the hessian and the second funda-
mental form of SR given by the vector N . Recalling that R is the radius function, for any
X ∈ Tp SR , dR(X ) = X (R) = 0, and using the expressions for the hessian and the second fun-
damental form, we have:

0 = X (Y (R)) = X (dR(Y )) = (∇X dR)Y +dR(∇X Y ) = HessR(X ,Y )−σ(X ,Y ) ∀X ,Y ∈ Tp SRmax .

Therefore, HessR(X ,Y ) =σ(X ,Y ). The expression (4.4) shows that

(R ◦γ)′′(0) = HessR(γ′,γ′) =σ(γ′,γ′) > 0,

which contradicts the existence of a maximum in 0 (i.e. the condition (b) above) and thus,
the fact that a geodesic can leave a BR0 and return to it afterwards.

4.2 Main Lorentzian result on completeness

In this section, we are going to work mainly with Lorentzian manifolds that are isometric
to Ln out of a compact subset, or close to them. In what follows, K ⊂ M will be a compact
connected n-submanifold with boundary ∂K . That is, K is the closure of a non-empty open
subset K̊ whose boundary is a smooth hypersurface embedded in M . The following defini-
tion gives the basic type of manifold that will be studied along this chapter.

Definition 4.3. A Lorentzian manifold M has a Lorentz-Minkowski end if M \K is isometric
to Ln \ K0, where K ⊂ M is a compact connected set with smooth connected boundary that is
the closure of a non-empty open set and K0 ⊂ Ln is a compact set of Ln . In particular, K is a
compact ball in M when its boundary ∂K is equal to an Euclidean sphere SR (see section 4.1)
for some R > 0 in Ln . In this case, we say that M has a spherical Lorentz-Minkowski end.

We will fix the isometryφ of the definition along this chapter so that we will identify points
of M \K̊ to Ln \K̊0. As K is the closure of an open subset, the natural notion of geodesic com-
pleteness will take into account the geodesics ending in the boundary. Then, it is possible to
find geodesics that cannot be defined for all s ∈R. The concept of geodesic completeness in
a manifold with boundary is not exactly the same as in a smooth manifold without bound-
ary, because geodesic ending at the boundary will be regarded as complete even if they are
not defined for all s ∈R.

Definition 4.4. Let K be a smooth manifold with boundary. K is geodesically complete if
every inextendible geodesic γ in K is defined on a closed interval I . That is, if I is lower or
upper bounded, γ has an endpoint in K .

It is clear that when a manifold M is geodesically complete, any n-submanifold N with
boundary, closed as a subset, is complete as well, because geodesics are either defined on R
or have an endpoint.

In chapter 3, the concept of C 1 neighborhood of a metric was defined. In this chapter
however, the hypotheses of the theorem 3.17 of stability of completeness may not hold, and
it is necessary to find new conditions to ensure stability. It is for this reason that neighbor-
hoods of metrics up to K are introduced.
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Definition 4.5. Let (M , g ) be a Lorentzian manifold. A set of metrics UK (g ) ⊂ Lor(M) is a
neighborhood of g up to K if there exists some continuous function δ : M → [0,∞) such that
UK (g ) = {ḡ ∈ Lor(M) : |g − ḡ |1 ≤ δin K , |g − ḡ |1 < δ in M \K } where δ(p) = 0if and only if p ∈ K .

Notice that, when all the metrics are restricted to M \ K , all those in UK (g ) constitute a
usual C 1 neighborhood of g .

One of the features that will be studied in this section is the holonomy group of K , as
well as its implications on the completeness of M . In particular, we will study precompact
holonomies.

Observation 4.6. It makes sense to extend the notion of holonomy group to any connected
manifold K with boundary, allowing the curves to lie on the boundary. When the holonomy
group is calculated in an interior point, the curves that touch the boundary can be approx-
imated to curves in K̊ . Considering continuity of parallel transport, both holonomy groups
of K and K̊ will have the same closure.

In the next proposition, we study completeness in the particular case that K is a compact
ball, that is, K0 = BR0 , where BR0 is the ball of radius R0.

Proposition 4.7. Let (M , g ) be a Lorentzian manifold such that M has an spherical Lorentz-
Minkowski end and M \ K̊ is isometric to Ln \ B̊R0 , where BR0 is the ball of radius t0. If K is
geodesically complete, then M is complete. In particular, if K has precompact holonomy, M
is complete.

Proof. Let γ : [0,b) → M be an inextendible geodesic in M . If Im(γ) ⊂ M \K̊ , γ can be treated
as a geodesic in Ln , therefore, γ is a complete geodesic; indeed, even if γ intersects ∂K ,
because of continuity of the Levi-Civita connection, γ is again treated as a geodesic inLn and
therefore complete. Secondly, if Im(γ)∩ K̊ 6= ;, there are two possibilities. If γ enters into K
and it does not leave again, γ is complete in the forward direction due to the completeness
hypothesis in K . Otherwise, γ leaves K at least once. However, in this case, it will not return
to it, because when it leaves it can be treated as geodesic in Ln leaving a convex set.

Precompact holonomy in the compact set K implies that every geodesic in K is extendible
in K , as shown in theorem 2.7. Thus, completeness of M follows.

As a remark of the previous proposition, the hypothesis of K being a compact ball has
been essential. This proof would not hold if the compact set K would have been a general
compact set. Next theorem is a result on stability of completeness in manifolds that are Ln

out of a compact ball, as the ones of the previous proposition.

Theorem 4.8. Under the hypotheses of proposition 4.7, there exists a neighborhood of Lorentzian
metrics up to K UK (g ) of g such that ḡ ∈UK (g ) (M , ḡ ) is complete.

Proof. Our manifold will be divided in two components, M \ K̊ and K . Studying M \ K̊ is
equivalent to study Ln \ B̊R0 , which is complete as a manifold with boundary. Then, notice
that there exists a C 1 neighborhood U ′

1(η) such that if ḡ ∈ U ′
1(η), (Ln , ḡ ) is complete as Ln

fulfills the conditions of theorem 3.17.

Completeness in Ln , implies completeness in Ln \ B̊R0 , and therefore, completeness in
M \ K̊ . Then, there exists a neighborhood of complete metrics for M \ K̊ :

U1(g ) = {ḡ ∈ Lor(M \ K̊ ) : |g − ḡ |1 < δ1}. (4.5)
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On the other hand, recall that for ensuring K to be complete, even if the metric of K is
g , it is precise that no new geodesics enter into it. In Ln , the strong convexity of {SR }R pre-
vents that geodesics leaving B̊R0 return to it; so, in M the strong convexity of hypersurfaces
isometric to {SR }R prevents that geodesics leaving K can come back, as in lemma 4.2. As the
coefficients of the second fundamental form of {SR }R depend on the coefficients of g and its
first derivatives, it is possible to find a C 1 neighborhood of metrics U2(η) in Ln \ B̊R0 , as we
could see in lemma 4.1 in which the strong convexity of the collection {SR }R is preserved.
The C 1 neighborhood for g in M \ K̊ can be written as:

U2(g ) = {ḡ ∈ Lor(M \ K̊ ) : |g − ḡ |1 < δ2}. (4.6)

Then, if ḡ ∈U1(g )∩U2(g ), (M \ K̊ , ḡ ) is a complete manifold with boundary and the collec-
tion {SR }R is strongly convex for each ḡ . Having these two neighborhoods, we can build a
neighborhood up to K and check that M is complete with any of these metrics. Indeed, let
t be the radius function and δ be the function defined as follows:

δ(p) =
{

0 p ∈ K

e−
1

R(p)−R0 min(δ1(p),δ2(p)) p ∉ K
(4.7)

This function is continuous and equal to zero in K . Finally, the neighborhood up to K can
be given as:

UK (g ) = {ḡ ∈ Lor(M) : |g − ḡ |1 ≤ δ, |g − ḡ |1 < δ in M \ K } (4.8)

It is enough to check completeness of geodesics in the forward direction, that is, γ : [0,b) →
M , because the reparameterization γ(−t ) is a geodesic as well. Let γ : [0,b) → M be an
inextendible geodesic in (M , ḡ ) for ḡ ∈UK (g ).

• Suppose that γ is imprisoned in K . As the metric in it remains unchanged, γ in K is
one of the geodesics of (M , g ), therefore, it is complete in the forward direction.

• If Im(γ)∩K 6= ; and γ points outwards K at some point γ(s0), by lemma 4.2, it does
not return to it, because the collection {SR }R≥R0 is strongly convex for every metric g̃ in
UK (g ), as they belong to U2(g ). Then, γ remains in M \ K̊ leading to its completeness
in the forward direction, which holds for any metric ḡ in U1(g ) above, and thus, in
UK (g ).

• If Im(γ)∩K =;, it is clear that it is complete, because it can be studied out of K .

Observation 4.9. Moreover, we can find an actual C 1 neighborhood of g for some especial
cases. We can prove that (M , g ) has a pseudoconvex geodesic system. Let A ⊆ M be a com-
pact set, and let B ⊆ M be a closed ball that encloses A ∪K . Then, γ joining p, q ∈ A cannot
leave B , because ∂B can be regarded as a sphere in Ln , and by lemma 4.2, once a geodesic
leaves a sphere in Ln , it cannot return to it.

Thus, assuming that (M , g ) has no imprisoned geodesics in K , the hypotheses of theorem
3.17 hold and a the neighborhood U (g ) such that if ḡ ∈ U (g ), (M , ḡ ) is complete is found
directly.
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In the next two sections, we will see generalizations of this result. First, we will see that if
M is Ln up to a compact connected set with connected boundary, we can ensure its com-
pleteness when K has precompact holonomy. Furthermore, there exists a C 1 neighborhood
up to a compact ball enclosing K such that M is complete. Secondly, we will see that a man-
ifold can have two or more Lorentz-Minkowski ends, see definition 4.15. In this case, if the
ends are spherical, completeness of M in ensured by completeness of K , in fact, complete-
ness is stable in this case. In this section, it can also be seen a generalization in case the
boundary of K in each end is an arbitrary connected hypersurface instead of an sphere.

4.2.1 M is Ln out of a connected compact manifold with connected boundary

Up to this point, if M has a spherical Lorentz-Minkowski end and M is complete, the exis-
tence of a special neighborhood of metrics in which M is complete has been proven. Nev-
ertheless, we cannot ensure the existence of neighborhoods up to K when K is an arbitrary
manifold with boundary. When K is a compact manifold with boundary, ∂K is a finite union
of disjoint connected components ∂i K i = 1, . . . ,n, which are differential hypersurfaces in
M . Now, recall the celebrated Jordan-Brouwer theorem.

Theorem 4.10. Let N be a compact connected hypersurface insideRn . Then N dividesRn into
two connected components, one bounded N1, called the inside of N and other one N2 that is
unbounded. In fact, N̄1 is a smooth manifold with boundary.

By this theorem, each ∂i K divides M into two connected components. It can be immedi-
ately deduced from theorem 4.10 because M is Ln out of K . A strong result in completeness
as the one given in the previous section is not achieved for a general K . Nevertheless, if
K is a compact connected manifold with connected boundary and if we add the condition
of precompact holonomy, we can achieve a result in completeness. In order to obtain this
improvement, we will use Lipschitz curves.

Definition 4.11. Let (M , g ) be a Riemannian manifold and d the distance induced by g . We
say that γ : I → M is Lipschitz if there exists a constant C > 0 such that

d(γ(t ′),γ(t )) ≤C |t − t ′| (4.9)

for every t , t ′ ∈ I . We say that γ : I → M is locally Lipschitz if for every t ∈ I there exists an
interval I ′ with t ∈ I ′ such that d(γ(t ′),γ(t )) ≤ C |t − t ′| for t ′ ∈ I ′ and for some C depending
on t.

Observation 4.12. Note that if a curve in (M , g ) is Lipschitz, so is locally Lipschitz. Moreover,
it is easy to check that if a curve is locally Lipschitz for g , it is locally Lipschitz for every
Riemannian metric. Moreover, if I is compact, the notions of locally Lipschitz and Lipschitz
are the same.

Finally, observe that parallel transport is defined for Lipschitz curves. Indeed, general
ODE theory states that the criteria of existence and uniqueness apply to Lipschitz functions,
therefore, parallel transport can be extended to Lipschitz curves as well.

Next lemma is a result on the holonomy group of a compact ball K̄ enclosing K in M with
Holp (∇K ) precompact.
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(a)

  

(b)

Figure 4.2: Representation of the sets K and K̄ and two curves, one in (a) and one in (b), with
the same parallel transport in K̄ .

Lemma 4.13. Let M be Ln up to K and K a compact manifold with connected differentiable
boundary in M and having precompact holonomy. If K̄ is a compact ball enclosing K , then K̄
has precompact holonomy.

Proof. First, we show for each curve in K̄ leaving and returning to K once, one can find
a second curve contained in K that has the same parallel transport as the first above. Let
γ1 : [0,b] → K̄ be a curve that leaves K once, that is γ1(t1),γ1(t2) ∈ ∂K , t1 < t2 and γ([t1, t2]) ⊂
K̄ \ K o. Out of K , the connection is the usual one and the parallel transport is trivial, that is,
τγ1([t1,t2]) ≡ i dRn . Any curve in ∂K will have the same parallel transport as out of K , that is if
β : [t1, t2] → ∂K is a curve with β(t1) = γ1(t1) and β(t2) = γ1(t2), then τβ = τγ1([t1,t2]) ≡ i dRn .
Therefore, this equality holds:

τγ1 = τγ1[t2,b] ◦τγ1[t1,t2] ◦τγ1[0,t1] = τγ1[t2,b] ◦τβ[t1,t2] ◦τγ1[0,t1]. (4.10)

Defining the curve in K

γ̄1 =


γ1 0 ≤ t ≤ t1

β t1 ≤ t ≤ t2

γ1 t2 ≤ t ≤ b
(4.11)

we find that τγ1 = τγ̄1 . In figure 4.2a, the loop γ leaves K once. In figure 4.2b, the loop γ̄ has
the same parallel transport as γ and is completely contained in K .

As K̄ is connected, Hol (∇K̄ ) does not depend on the point chosen for its calculation. Let
γ : [a,b] → K̄ be a piecewise differentiable loop contained in K̄ with its endpoint p in K . As
K̄ \K is open, γ−1(K̄ \K ) is open. Let γ(t ) ∈ M \K , then, there exists a maximal open interval
(a, (t ),b(t )) such thatγ|(a(t ),b(t )) lies on M \K . In particular, γ(a(t )),γ(b(t )) ∈ ∂K . Considering
∂K with a Riemannian metric h, for example, the metric induced by the Euclidean one inRn

and substitute each γ|(a(t ),b(t )) by a minimizing geodesic from γ(a(t )) to γ(b(t )). We define
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the curve γ̄ : [a,b] → K as the curve γ after subtituting the segments in which the geodesic
left K .

γ̄ is a Lipschitz curve. This is because in K̊ the geodesic was Lipschitz and so is in ∂K .
As ∂K is a differentiable hypersurface, it can be seen as F−1(0) for a differentiable function
F : M → R, that, in particular, is Lipschitz. From observation 4.12, the parallel transport
of γ̄ can be defined. Furthermore, the parallel transport of γ̄ coincides with the parallel
transport of γ, because in each γ̄|(a(t ),b(t )) for γ(t ) ∈ M \ K the parallel transport is the same
as for γ|(a(t ),b(t )), because both segments belong to Ln and are homotopic.

Next theorem shows that in case K has precompact holonomy and connected boundary,
M is complete and there exists a compact ball K̄ containing K and an up to K̄ neighborhood
of complete metrics.

Theorem 4.14. Let (M , g ) be a Lorentzian manifold that has a Lorentz-Minkowski end and
K ⊂ M a compact set, which has precompact holonomy. Then, (M , g ) is complete and there
exists a neighborhood UK̄ (g ) of complete metrics, where K̄ is a compact ball enclosing K .

Proof. The case in which K has precompact holonomy and connected differentiable bound-
ary can be reduced to the case in which M is Ln out of a compact ball. Taking in M \ K any
hypersurface isometric to a sphere we define the compact ball K̄ as the space enclosed by
the sphere, that is, if the sphere is SR0 , K̄ = BR0 \ K̊ ∪K . By lemma 4.13, K̄ has precompact
holonomy and thus, K̄ is complete as a manifold with boundary. By the proposition 4.7,
(M , g ) is complete and by theorem 4.8, there exists UK̄ (g ) a neighborhood of metrics up to
K̄ such that for ḡ ∈UK̄ (g ), (M , ḡ ) is complete.

We will show an example in which we see that out of the compact set we must have Ln and
not any flat Lorentzian manifold. Let M be the Misner cylinder and K = {(x, y) ∈ M , (x− 3

2 )2+
y2 ≤ ε2} for ε< 1

2 . It is clear that M \ K̊ and K are two flat complete manifolds, but M is not.
Even though we are in a flat manifold, the parallel transport in the boundary is not the same
as in M \ K̊ , because M \ K̊ is not L2 minus an open set and the curves are not homotopic.
Take for example a curve y = 0 in M \K̊ and a curve in ∂K that joins its endpoints, defined as
in the proof of 4.13. The manifold is flat, but both curves are not homotopic, and the parallel
transport is not the same. An example like this cannot be found in Ln .

4.2.2 Manifolds with a finite number of Lorentz-Minkowski ends

In this section we introduce the concept of manifolds that have several Lotrentz-Minkowski
ends.

Definition 4.15. Let (M , g ) be a Lorentzian manifold. We say that M has m Lorentz-Minkowski
ends if there exists K a compact connected set such that M \K̊ is isometric to the disjoint union
of Ln \ K̊i , where Ki is a compact connected set, that is, M \ K̊ ∼=∪m

i=1(Ln \ K̊i ). If each Ki is an
Euclidean ball as in definition 4.3, we say that M has m spherical Lorentz-Minkowski ends.

We will work in the completeness of this kind of manifolds. We start studying manifolds
that have spherical Lorentz-Minkowski ends, and later we generalize to regular Lorentz-
Minkowski ends. First, we show an example of a manifold with two spherical Lorentz-
Minkowski ends that is incomplete. In it, example 3.5 is introduced to construct a compact
incomplete set, which is not trivial.
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Figure 4.3: A Lorentzian manifold with two ends. In the picture, the ends are marked as Ln .

Example 4.16. We build a Lorentzian manifold (M , g ) with two ends, that is M\K = (Ln \ B)∪
(Ln \ B), where B is a compact ball. It can be represented in figure 4.3, in which the com-
pact set is labeled as K and the Lorentz-Minkowski ends are labeled as Ln . In this case, M
is globally defined with the extended polar coordinates (r,θ) in the domain R× [0,2π]. The
ends of M are {r ≤−3} and {r ≥ 3} and K = {−3 ≤ r ≤ 3}. K is a compact set homeomorphic
to a cylinder, in which an incomplete metric is chosen. In the next paragraphs we build
the incomplete Lorentzian metric in M . First, in the ends of M the metric is η= d x2 −d y2,
where x, y are the usual coordinates in the Lorentz-Minkowski space. In the coordinates
(r,θ), x = r cosθ and y = r sinθ. In this coordinates, we have d x = cosθdr − r sinθdθ and
d y = sinθdr + r cosθdθ. Therefore, the metric in L2 is η = cos2θdr 2 −2r cosθ sinθdr dθ+
r 2 sinθdθ2−(sin2θdr 2−2r cosθ sinθ+r 2 cos2θdθ2) = cos2θdr 2−2r sin2θdr dθ−r 2 cos2θdθ2.
Then, when |r | ≥ 3, the metric of M is:

g = η= cos2θdr 2 −2r sin2θdr dθ− r 2 cos2θdθ2,

We want to connect differentiably the metric in both ends to the following metric defined in
−1 ≤ r ≤ 1:

g = 2dr dθ+a(r )dθ2,

such that a(r ) is periodic of period 1 and a(0) = 0, a′(0) 6= 0. We are working with a metric
similar to the one of example 3.5. The geodesic defined by its initial conditions γ(0) = 0,
γ′(0) = (0,1) is closed and incomplete, as in example 3.5.

To connect both metrics we will use plateau functions. We call them h(t ) and they are
defined in the following way:

h(t ) = u(t )

u(t )+u(1− t )
, where u(t ) =

{
e−

1
t t > 0

0 t ≤ 0
(4.12)

This function is called plateau function because it is a differential function equal to zero in
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t ≤ 0 and equal to 1 in t ≥ 1. In fact, we have:

lim
t→0+ h′(t ) =

1
t 2 e−

1
t

(
e−

1
t −e−

1
1−t

)
+e−

1
t

(
1
t 2 e−

1
t − 1

(1−t )2 e−
1

1−t

)
(
e−

1
t +e−

1
1−t

)2 = 0 = lim
t→0− h′(t ). (4.13)

Similarly, h′(1) = 0. We also need to use an important property of plateau functions. If
f (t ) = g (t )h(t ), where g (t ) is any differentiable function defined in R, we have f ′(0) = 0 and
f ′(1) = g ′(1). This is because f ′(t ) = g ′(t )h(t )+g (t )h′(t ) and h(0) = h′(0) = h′(1) = 0, whereas
h(1) = 1.

Using this kind of functions, the metric in 1 ≤ r ≤ 2 can be defined as:

g = (−h(r −1)2r sin2θ+2h(2− r ))dr dθ+ (−h(r −1)r 2 cos2θ+h(2− r )a(r )
)

dθ2.

This metric is clearly continuous in r = 1. Because of the aforementioned property of the
derivatives of a plateau function we have continuity in the first derivatives as well. In r = 2,
the metric is 2r sin2θdr dθ− r 2 cos2θdθ2. The purpose now is to define the metric in 2 ≤
r ≤ 3.

g = h(r −2)cos2θdr 2 − r sin2θdr dθ− r 2 cos2θdθ2.

Then, the metric is continuous in r = 2 and r = 3, and so are the first derivatives. For −3 ≤
r ≤−1 a similar reasoning can be followed to complete the definition of g .

We still need to see that this metric is Lorentzian. If |r | ≤ 1 or if |r | ≥ 3 it is clear. A sufficient
condition to ensure that a metric is Lorentzian in dimension 2 is that the determinant of the
metric is negative. In the case 1 ≤ r ≤ 2, we have

det g =− (h(r −1)2r sin2θ+2h(2− r ))2 < 0.

Secondly, if 2 ≤ r ≤ 3,

det g =−h(r −2)r 2 cos2 2θ− r 2 sin2 2θ < 0.

Similarly, in−3 ≤ r ≤−1, it can be obtained that det g < 0. In this example we have presented
a Lorentzian manifold with two spherical Lorentz-Minkowski ends that is incomplete.

If in the previous example we had chosen a complete metric in K , M would have been
complete, taking for example the function a(r ) to be constantly zero.

We can see the completeness of this kind of manifolds by generalizing proposition 4.7.

Proposition 4.17. Let (M , g ) be a Lorentzian manifold such that M has m spherical Lorentz-
Minkowski ends. If K is geodesically complete, then M is geodesically complete.

Proof. Let γ : [0,b) → M be an inextendible geodesic in M . If Im(γ) ⊂ M \ K̊ , as γ is con-
nected, Im(γ) ⊂ Ln \ K̊i . In this case, γ is an straight line and thus, complete. In case
Im(γ)∩K 6= ;, there are two possibilities. If γ enters K and it does not leave again, γ is
complete by geodesic completeness of K . Otherwise, γ leaves at least once. In this case, it
leaves to one of the ends, and from the convexity of ∂Ki follows that γ does not return to
it.

The theorem 4.8 can also be generalized to this type of manifolds.
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Theorem 4.18. Under the hypotheses of proposition 4.17, there exists UK (g ) a neighborhood
of Lorentzian metrics up to K such that if ḡ ∈UK (g ), (M , ḡ ) is complete.

Proof. The proof of this theorem is based on the proof of theorem 4.8. In each end Ln \
Bi , two neighborhoods of metrics can be taken, fulfilling the same conditions as U1(g ) and
U2(g ) in the proof of theorem 4.8. For each end Ln \ Bi we have the neighborhoods:

• U i
1(g ) = {ḡ ∈ Lor(Ln \ K̊i ) : |g − ḡ |1 < δi

1} in which Ln \ Ki is complete.

• U i
2(g ) = {ḡ ∈ Lor(Ln \ K̊i ) : |g − ḡ |1 < δi

2} in which affine spheres are strongly convex in
Ln \ Bi .

Having these neighborhoods, we can build a neighborhood of metrics up to K of g . First,
the function:

δ(p) =
{

0 p ∈ K

e
1

R(p)−Ri min(δi
1,δi

2) p ∈ Ln \ Ki i = 1, . . . ,m.

is defined in M and is continuous and zero in K . In the definition of this function we have
used ti that is the radius of Ki and the function t , defined in each end, is the radius function
in Ln . Then,

UK (g ) = {ḡ ∈ Lor(M) : |ḡ − g |1 ≤ δ in K , |ḡ − g |1 < δ in M \ K } (4.14)

is a neighborhood of metrics up to K . Completeness in this neighborhood has to be checked.
Ler γ : [0,b) → M be a geodesic in (M , ḡ ) with ḡ ∈UK (g ).

• If γ is imprisoned in K , γ is complete because ḡ = g in K .

• If Im(γ)∩K 6= ; andγpoints outwards at some pointγ(s0) in ∂Ki for some i ∈ {1, . . . ,m},
we have that from that point the geodesic is a geodesic leaving Ki , which is a convex
set. Furthermore, the collection of spheres {SR }R are convex sets in Ln \ Ki because
ḡ ∈U i

2(g ), γ does not return to K . As ḡ ∈U i
1(g ), Ln \ Ki is geodesically complete, γ is

complete.

• If Im(γ) ∈ Ln \ Ki for some i , γ is complete because ḡ ∈U i
1(g ) in Ln \ Ki .

In the line of section 4.2.1, each ∂i K does not have to be an sphere and can be any con-
nected hypersurface in the i -th copy of Ln . In the remainder of the section, we work with
manifolds with m Lorentz-Minkowski ends. In the special case that K has precompact
holonomy we can ensure its completeness and the stability of its completeness out of a
compact set K̄ with the characteristics of the one in definition 4.15 that contains K .

Proposition 4.19. Let (M , g ) be a Lorentzian manifold with m Lorentz-Minkowski ends. If
M \ K̊ =∪m

i=1(Ln \ K̊i ) and K has precompact holonomy, (M , g ) is complete.

Proof. We do a recursive application of lemma 4.13. Let Ln \ K̊1 be an end of M . Defining
the connected manifold Ln \ K̊1 ∪K we are in the conditions of lemma 4.13, therefore, there
exists a compact ball B1 that encloses ∂1K and has precompact holonomy. We define K̄1 =
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(B1 \K̊1)∪K and the Lorentz-Minkowski end Ln \B1. We proceed in the same way for the rest
of the ends, using K̄i as the compact set for lemma 4.13, until we find M \K̄m =∪m

i=1(Ln \B̊i ).
Hence, M has m Lorentz-Minkowski ends. Besides, by construction, K̄m has precompact
holonomy. Using proposition 4.17, we have completeness of M .

Theorem 4.20. Let (M , g ) be a Lorentzian manifold with m Lorentz-Minkowski ends. If M \
K̊ =∪m

i=1(Ln \K̊i ) and K has precompact holonomy, there exists a compact set K̄ that contains
K , such that there exists UK̄ (g ) a neighborhood of metrics up to K̄ such that (M , ḡ ) is complete
for ḡ ∈UK̄ (g ).

Proof. By proposition 4.19, M is complete and taking K̄ = K̄m in the proof of this proposi-
tion, we have M \ K̄ =∪m

i=1(Ln \ B̊i ), therefore, M has m spherical Lorentz-Minkowski ends.
Applying theorem 4.18, we have a neighborhood of metrics up to K̄ such that if ḡ ∈UK̄ (g ),
(M , ḡ ) is complete.
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