Numerical Methods for Ordinary Diffrential Equations.

Tom Lyche, Jean-Louis Merrien

March 8, 2019

Abstract

For $I = [t_1, t_1 + T] \subset \mathbb{R}$, let $f(t, x) \in C(I \times \mathbb{R}^m, \mathbb{R}^m)$. With an initial condition $\eta \in \mathbb{R}^m$, we are looking for a function $y \in C^1(I, \mathbb{R}^m)$ solving the **Cauchy problem**

$$\begin{cases} \boldsymbol{y}'(t) = f(t, \boldsymbol{y}(t)), \, \forall t \in I, \\ \boldsymbol{y}(t_1) = \boldsymbol{\eta}. \end{cases}$$

This is an initial value problem for a system of first order differential equations. **Numerical schemes:** We compute approximations $u_i \approx y(t_i)$ on a **partition** $t : t_1 < t_2 < \dots < t_{n+1} = t_1 + T$ of the interval $I = [t_1, t_1 + T]$. Here $u_1 \in \mathbb{R}^m$ is given and

$$\boldsymbol{u}_{i+1} := \boldsymbol{u}_i + h_i \phi(t_i, \boldsymbol{u}_i, h_i), \quad h_i := t_{i+1} - t_i, \quad i = 1, \dots, n.$$
(1)

We will define, **stability**, **order** and **convergence** of the numerical scheme.

Program: If $f \in C([t_1, t_1 + T] \times \mathbb{R}^m, \mathbb{R}^m)$ and $\eta \in \mathbb{R}^m$, the solution of the Cauchy problem can be approximated by a numerical method using a uniform step length:

with inputs the file namefunc.m computing the function f, the interval $I = [t_1, t_1 + T]$, the initial condition η and the number of intervals in the partition n. The outputs are the partition t and the approximation $u \in \mathbb{R}^{m \times (n+1)}$ of the solution at the grid points.